Заливка прошивки в STM32 через USB. Зашита от считывания прошивки stm32 Пишем в чип

Подписаться
Вступай в сообщество «allcorp24.ru»!
ВКонтакте:

Ну, вот мы и дошли до одного из самых интересных этапов, — как же залить в контроллер готовую прошивку и оживить наконец нашу железяку.

Вообще-то прошивать контроллеры STM32 можно по-разному, но мы рассмотрим самый простой вариант прошивки — через последовательный интерфейс с помощью фирменной утилиты Flash Loader Demonstrator. Эта утилита совершенно бесплатна и её можно скачать как с официального , так и .

Как мы ранее уже говорили, — в системной области памяти контроллера зашит bootloader. Именно он и позволяет записать прошивку во flash-память через последовательный интерфейс.

Детально bootloader описан в документе AN2606 (CD00167594.pdf), а используемый им протокол — в документе AN3155 (CD00264342.pdf). Это для тех, кто хочет исчерпывающей информации, а мы рассмотрим процесс прошивки через bootloader вкратце.

Для начала вам нужно скачать и установить себе на компьютер утилиту Flash Loader Demonstrator.

Итак, ногу Tx контроллера нужно соединить с ногой Rx преобразователя, а ногу Rx контроллера — с ногой Tx преобразователя. Кроме этого, контроллер нужно запитать и обеспечить нужные уровни на ногах BOOT0 (pin 44), BOOT1 (pin 20). Для запуска bootloadera, который расположен в system memory, ногу BOOT1 нужно подтянуть к «земле», а BOOT0 — к «питанию» (табличка справа).

Подтяжку для BOOT0, BOOT1 лучше делать не жёсткую, а джамперами, чтобы можно было легко выбирать режимы загрузки (например, переключившись после заливки проги в режим загрузки из flash, можно будет эту прогу сразу и потестить).

Схема подключения показана ниже.

Чётность и количество бит данных уже настроены как надо, скорость можно менять — контроллер в процессе инициализации обмена настраивается на выбранную скорость автоматически, com-порт нужно выбрать тот, который создался при подключении USB-to-COM преобразователя к компьютеру (наш преобразователь создаёт при подключении виртуальный com-порт, полностью имитирующий настоящий аппаратный). После того, как всё настроили — жмём «Next».

О том, что всё нормально и соединиться с контроллером удалось, нам сообщит зелёный сигнал светофора на следующей страничке. Если связь не установится — на эту страничку нас вообще не пустят, сообщив, что контроллер не отвечает.

При установлении связи программа автоматически определит сколько у контроллера flash-памяти и защищена ли эта память от чтения. Нажав кнопку «Remove protection» защиту можно снять, но при этом содержимое флеша будет стёрто (предыдущая записанная туда прошивка уничтожится). Жмём «Next».

В следующем окне нам предлагают выбрать тип программируемого камня (хотя непонятно зачем, — он и так автоматически определяется), а также показывают для нашего камня PID, карту flash-памяти, и версию bootloader-а. Просто жмём «Next».

В следующем окне нужно выбрать, что мы собственно хотим с нашим контроллером делать. Тут возможны следующие варианты: Erase (стереть), Download to device (загрузить в контроллер прошивку), Upload from device (считать прошивку с контроллера), Enable/Disable Flash protection (включить/выключить защиту flash-памяти), Edit option bytes (изменить байты опций). Соответственно, если мы хотим залить прошивку — выбираем Download to device, потом жмём на квадрат с тремя точками и выбираем в проводнике файл с прошивкой, которую надо залить, после чего опять жмём «Next».

На следующей странице внизу появится прогресс-бар, в котором будет показан ход выполнения процедуры загрузки. После того, как вся прошивка будет загружена в контроллер, этот прогресс-бар станет зелёным и в нём белыми буквами будет написано: «Download operation finished successfully» (операция загрузки успешно завершена). После этого, можно нажать кнопку «Close» и закрыть Flash Loader Demonstrator

Всё, теперь чтобы залитая программа начала выполняться нам останется только настроить контроллер на загрузку из flash (BOOT0 = 0, BOOT1 — любой уровень) и перезагрузить его.

Этот клон Ардуино предлагает специальный бутлоадер, который позволяет заливать прошивку через USB, без использования внешних компонентов типа ST-Link или USB-UART переходника.

Сегодня мне понадобилось поработать с голым контроллером из-под CooCox и без stm32duino. Но вот в чем проблема. Даже простая моргалка лампочкой влитая через этот бутлоадер не работает.

Давайте разбираться. Возможно, мои выкладки покажутся кому-то банальностью. Но я только начинаю изучать контроллеры STM32 и на поиск проблемы убил как минимум полдня. Вдруг эта статья сократит кому-то время разработки.

Я ничего не имею против ST-Link и других отладчиков. Но в моем готовом устройстве его не будет, но точно будет USB. Почему бы сразу не заложить возможность обновлять прошивку через USB? Лично я нахожу этот способ удобным. тем более что все равно у меня уже подключен шнурок по которому идет питание и USB Serial.

Давайте посмотрим как работает бутлоадер. Для начала на примере контроллеров AVR. Почему я о нем вспомнил? Я переходил с Arduino и подсознательно ожидал такого же поведения. Но в STM32 оказалось все по другому. Потому хочу рассказать о разнице этих двух микроконтроллеров.

Итак. В микроконтроллерах AVR ATMega под бутлоадер можно зарезервировать некоторое количество памяти ближе к концу флеша. С помощью fuse битов можно регулировать с какого адреса будет стартовать программа. Если бутлоадера нет - программа стартует с адреса 0x0000. Если бутлоадер есть - он запускается с некоторого другого адреса (скажем, в ATMega32 с 0x3C00, если размер бутлоадера выбран 2к).

Когда бутлоадер сделал свои дела он передает управление основной программе с адреса 0x0000. Т.е. программа всегда стартует с адреса 0x0000. Компилятор и линковщик работают с учетом того, что код будет находится в начале адресного пространства.

В микроконтроллерах STM32 все не так. Все программы стартуют с адреса 0x0800000. Бутлоадер не является чем-то таким особенным. Это такая же программа, которая стартует с того же самого начального адреса. В процессе работы бутлоадер может принять прошивку (через USB или UART, считать с флешки, принять со спутника, достать из подпространства, whatever...) и записать ее по адресам выше чем находится сам загрузчик. Ну и, конечно же, в конце своей работы передать управление основной программе.


Так вот при компиляции прошивки нужно знать куда же бутлоадер запишет прошивку и соответствующим образом скорректировать адреса.

На этом с теорией все. Переходим к практике. Ниже пошаговая инструкция как прикрутить USB загрузчик к микроконтроллерам серии STM32F1xx, а может быть и к некоторым другим тоже.

Есть, правда, некоторые ограничения по схемотехнике. Тут я, к сожалению, не силен. ЯТП нужен подтягивающий резистор 1.5к для порта PA12 (он же USB D+). Это позволяет загрузчику в нужные моменты времени подключаться и отключаться от USB.

  • Теперь микроконтроллер готов ппрошиваться через USB загрузчик. Но ведь еще нужно саму прошивку подправить. А сделать нужно 2 вещи:
    • Указать линкеру стартовый адрес. В CooCox это делается в настройках проекта, вкладка Link, раздел Memory Areas, Адрес IROM1 Start Address. Бутлоадер занимает первые 8 килобайт, значит стартовый адрес прошивки будет 0x0800000 + 0x2000 = 0x08002000. Поле Size, наверное, тоже стоит уменьшить на 8к.
    • Где нибудь вначале программы перед инициализацией периферии сделать вызов

      NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x2000);

      UPDATE 17.05.2018: В современной версии STM32Cube функции NVIC_SetVectorTable() нет. Вместо этого можно в файле system_stm32f1xx.c (или аналогичного для другого микроконтроллера) исправить дефайн VECT_TAB_OFFSET

  • Заливатор прошивки можно взять из проекта stm32duino . В директории tools ищите скрипт под называнием maple_upload. Я пользовал только виндовую версию - maple_upload.bat.
  • Запускать так:

    "maple_upload.bat" COM20 2 1EAF:0003 "Path\To\Firmware.bin"
    Вместо COM20 нужно подставить свой порт куда прицепился микроконтроллер.

    Заливатор штука очень нежная, относительных путей не любит. так что путь к прошивке нужно указывать полностью.

    1EAF:0003 - это VID и PID

    2 - это параметр AltID, который указывает что прошивку нужно заливать по адресу 0x08002000 (читать ).

  • Еще чуток нюансов. Перед тем как заливать прошивку нужно запустить бутлоадер. Самый простой способ - нажать кнопку ресет. После этого запустится загрузчик и несколько секунд будет ждать прошивку. Если в этот момент никто не запустил maple_upload, загрузчик передаст управление основной прошивке.

    Из-за этого может возникнуть неудобство. Если микроконтроллер заглючил и повис, то он уже не слушает порт. Следовательно он не может услышать ключевую последовательность и перегрузиться в бутлоадер. Тогда только ресет в помощь.

    На этом все. Надеюсь моя статья прольет свет на то, как работает загрузчик в STM32 и как можно загружать прошивку через USB порт. К сожалению порог вхождения по прежнему высок, но вдруг кому-то моя статья поможет его преодолеть.

    Опубліковано 09.08.2016

    Микроконтроллеры STM32 приобретают все большую популярность благодаря своей мощности, достаточно разнородной периферии, и своей гибкости. Мы начнем изучать , используя бюджетную тестовую плату, стоимость которой не превышает 2 $ (у китайцев). Еще нам понадобится ST-Link программатор, стоимость которого около 2.5 $ (у китайцев). Такие суммы расходов доступны и студентам и школьникам, поэтому именно с такого бюджетного варианта я и предлагаю начать.


    Этот микроконтроллер не является самым мощным среди STM32 , но и не самый слабый. Существуют различные платы с STM32 , в томе числе Discovery которые по цене стоят около 20 $. На таких платах почти все то же, что и на нашей плате, плюс программатор. В нашем случае мы будем использовать программатор отдельно.

    Микроконтроллер STM32F103C8. Характеристики

    • Ядро ARM 32-bit Cortex-M3
    • Максимальная частота 72МГц
    • 64Кб Флеш память для программ
    • 20Кб SRAM памяти
    • Питание 2.0 … 3.3В
    • 2 x 12-біт АЦП (0 … 3.6В)
    • DMA контролер
    • 37 входов / выходов толерантных к 5В
    • 4 16-розрядних таймера
    • 2 watchdog таймера
    • I2C – 2 шины
    • USART – 3 шины
    • SPI – 2 шины
    • USB 2.0 full-speed interface
    • RTC – встроенные часы

    На плате STM32F103C8 доступны

    • Выводи портов A0-A12 , B0-B1 , B3-B15 , C13-C15
    • Micro-USB через который можно питать плату. На плате присутствует стабилизатор напряжения на 3.3В. Питание 3.3В или 5В можно подавать на соответствующие выводы на плате.
    • Кнопка Reset
    • Две перемычки BOOT0 и BOOT1 . Будем использовать во время прошивки через UART .
    • Два кварца 8Мгц и 32768 Гц. У микроконтроллера есть множитель частоты, поэтому на кварце 8 МГц мы сможем достичь максимальной частоты контроллера 72Мгц.
    • Два светодиода. PWR – сигнализирует о подачи питания. PC13 – подключен к выходу C13 .
    • Коннектор для программатора ST-Link .

    Итак, начнем с того, что попробуем прошить микроконтроллер. Это можно сделать с помощью через USART, или с помощью программатора ST-Link .

    Скачать тестовый файл для прошивки можно . Программа мигает светодиодом на плате.

    Прошивка STM32 с помощью USB-Uart переходника под Windows

    В системной памяти STM32 есть Bootloader . Bootloader записан на этапе производстве и любой микроконтроллер STM32 можно запрограммировать через интерфейс USART с помощью USART-USB переходника. Такие переходники чаще всего изготавливают на базе популярной микросхем FT232RL . Прежде всего подключим переходник к компьютеру и установим драйвера (если требуется). Скачать драйвера можно с сайта производителя FT232RL – ftdichip.com . Надо качать драйвера VCP (virtual com port). После установки драйверов в компьютере должен появиться виртуальный последовательный порт.


    Подключаем RX и TX выходы к соответствующим выводам USART1 микроконтроллера. RX переходника подключаем к TX микроконтроллера (A9). TX переходника подключаем к RX микроконтроллера (A10). Поскольку USART-USB имеет выходы питания 3.3В подадим питания на плату от него.

    Чтобы перевести микроконтроллер в режим программирования, надо установить выводы BOOT0 и BOOT1 в нужное состояние и перезагрузить его кнопкой Reset или выключить и включить питание микроконтроллера. Для этого у нас есть перемычки. Различные комбинации загоняют микроконтроллер в различные режимы. Нас интересует только один режим. Для этого у микроконтроллера на выводе BOOT0 должно быть логическая единица, а на выводе BOOT1 – логический ноль. На плате это следующее положение перемычек:

    После нажатия кнопки Reset или отключения и подключения питания, микроконтроллер должен перейти в режим программирования.

    Программное обеспечение для прошивки

    Если используем USB-UART переходник, имя порта буде примерно такое /dev/ttyUSB0

    Получить информацию о чипе

    Результат:

    Читаем с чипа в файл dump.bin

    sudo stm32flash -r dump.bin /dev/ttyUSB0

    Пишем в чип

    sudo stm32flash -w dump.bin -v -g 0x0 /dev/ttyUSB0

    Результат:

    Stm32flash 0.4 http://stm32flash.googlecode.com/ Using Parser: Raw BINARY Interface serial_posix: 57600 8E1 Version: 0x22 Option 1: 0x00 Option 2: 0x00 Device ID: 0x0410 (Medium-density) - RAM: 20KiB (512b reserved by bootloader) - Flash: 128KiB (sector size: 4x1024) - Option RAM: 16b - System RAM: 2KiB Write to memory Erasing memory Wrote and verified address 0x08012900 (100.00%) Done. Starting execution at address 0x08000000... done.

    Прошивка STM32 с помощью ST-Link программатора под Windows

    При использовании программатора ST-Link выводы BOOT0 и BOOT1 не используются и должны стоять в стандартном положении для нормальной работы контроллера.

    (Книжка на русском языке)

    Маркировка STM32

    Device family Product type Device subfamily Pin count Flash memory size Package Temperature range
    STM32 =
    ARM-based 32-bit microcontroller
    F = General-purpose
    L = Ultra-low-power
    TS = TouchScreen
    W = wireless system-on-chip
    60 = multitouch resistive
    103 = performance line
    F = 20 pins
    G = 28 pins
    K = 32 pins
    T = 36 pins
    H = 40 pins
    C = 48/49 pins
    R = 64 pins
    O = 90 pins
    V = 100 pins
    Z = 144 pins
    I = 176 pins
    B = 208 pins
    N = 216 pins
    4 = 16 Kbytes of Flash memory
    6 = 32 Kbytes of Flash memory
    8 = 64 Kbytes of Flash memory
    B = 128 Kbytes of Flash memory
    Z = 192 Kbytes of Flash memory
    C = 256 Kbytes of Flash memory
    D = 384 Kbytes of Flash memory
    E = 512 Kbytes of Flash memory
    F = 768 Kbytes of Flash memory
    G = 1024 Kbytes of Flash memory
    I = 2048 Kbytes of Flash memory
    H = UFBGA
    N = TFBGA
    P = TSSOP
    T = LQFP
    U = V/UFQFPN
    Y = WLCSP
    6 = Industrial temperature range, –40…+85 °C.
    7 = Industrial temperature range, -40…+ 105 °C.
    STM32 F 103 C 8 T 6

    Как снять защиту от записи / чтения?

    Если вы получили плату с STM32F103, а программатор ее не видит, это означает, что китайцы защитили Флеш память микроконтроллера. Вопрос “зачем?” оставим без внимания. Чтобы снять блокировку, подключим UART переходник, будем программировать через него. Выставляем перемычки для программирования и поехали:

    Я это буду делать из под Ubuntu с помощью утилиты stm32flash.

    1. Проверяем видно ли микроконтроллер:

    Sudo stm32flash /dev/ttyUSB0

    Должны получить что-то такое:

    Stm32flash 0.4 http://stm32flash.googlecode.com/ Interface serial_posix: 57600 8E1 Version: 0x22 Option 1: 0x00 Option 2: 0x00 Device ID: 0x0410 (Medium-density) - RAM: 20KiB (512b reserved by bootloader) - Flash: 128KiB (sector size: 4x1024) - Option RAM: 16b - System RAM: 2KiB

    2. Снимаем защиту от чтения а затем от записи:

    Sudo stm32flash -k /dev/ttyUSB0 stm32flash 0.4 http://stm32flash.googlecode.com/ Interface serial_posix: 57600 8E1 Version: 0x22 Option 1: 0x00 Option 2: 0x00 Device ID: 0x0410 (Medium-density) - RAM: 20KiB (512b reserved by bootloader) - Flash: 128KiB (sector size: 4x1024) - Option RAM: 16b - System RAM: 2KiB Read-UnProtecting flash Done. sudo stm32flash -u /dev/ttyUSB0 stm32flash 0.4 http://stm32flash.googlecode.com/ Interface serial_posix: 57600 8E1 Version: 0x22 Option 1: 0x00 Option 2: 0x00 Device ID: 0x0410 (Medium-density) - RAM: 20KiB (512b reserved by bootloader) - Flash: 128KiB (sector size: 4x1024) - Option RAM: 16b - System RAM: 2KiB Write-unprotecting flash Done.

    Теперь можно нормально работать с микроконтроллером.

    Мало кто знает, а в особенности те, кто только начинает изучать микроконтроллеры STM32, что их можно запрограммировать не имея специального программатора. Необходимо лишь выбрать режим загрузки контроллера через встроенный загрузчик, подключитьcя через UART и записать необходимый код.

    Теперь обо всем подробнее. Большая часть контроллеров STM32 имеет встроенный (нестираемый) загрузчик в специальной области памяти, который работает по протоколам UART, SPI, I2C и CAN. Конечно же проще всего работать через UART, т.к. он есть почти у каждого, кто имеет дела с электроникой, поэтому его и будем рассматривать.

    Выбор области памяти, из которой осуществляется загрузка контроллера осуществляется подачей низкого или высокого уровня на ножки BOOTx (может быть как одна, так и несколько). Подробнее о том, как выбрать загрузчик на конкретном контроллере указано в AN2606. Так же в AN2606 указано, какой интерфейс контроллера можно использовать для программирования. Еще, чтобы записать код в контроллер, потребуется небольшая программка с сайта ST, которая называется STM32 FlashLoader Demonstrator.

    Ну и чтобы понять, как эти знания использовать, запрограммируем плату с STM32F103C8T6B на борту.

    На плате имеются джамперы для установки режима загрузки контроллера. К сожалению они не подписаны, поэтому смотрим на фото выше и устанавливаем их так же. Установка джамперов BOOT0 в "1" и BOOT1 в "0" активируют встроенный загрузчик, как сказано в AN2606. Теперь можно подключить питание, а так же сигнальные линии RX и TX. Не стоит забывать о том, что линии RX и TX подключаются перекрестно:

    RX <---> TX

    TX <---> RX


    Далее запускаем программу FlashLoader Demonstrator. выбираем нужный COM-порт и жмем далее. Если все подключено верно, то получаем сообщение о том, что подключенный контроллер имеет 64 кБ памяти и не имеет защиты от чтения.


    Жмем далее. Открывается лист с имеющимися в контроллере страницами памяти, он нас не интересует, снова жмем далее. Открывается страница с возможностью выбора действий над контроллером:
    • Erase (стереть)
    • Download to device (загрузить прошивку в МК)
    • Upload from device (считать прошивку из МК)
    • Enable/Disable Flash protection (включить/отключить защиту флеш памяти)
    • Edit option bytes (редактирование защиты памяти)

    Жмем на три точки, выбираем наш файл "test_stm.hex", ставим галочку возле "Verify aster download" для проверки правильности загрузки, а так же "Jump to the user program", чтобы МК сразу начал выполнять загруженную программу по окончании процесса загрузки.

    Допустим вы выпустили на рынок своё устройство и опасаетесь того, что кто-то начнёт его копировать… Действительно - достаточно подключиться программатором к нашему устройству и считать прошивку, например, через утилиту ST-Link Utility (Target Connect ).

    Конечно можно просто оторвать ножки микроконтроллера… но разработчики ST Microelectronics предлагают альтернативу получше. У всех МК есть система защиты (read out protection). Суть её крайне проста - если в специальном регистре (Option bytes) установлено определённое значение - то возможность отладки и считывания прошивки отключается. В таком режиме у вас также пропадёт возможность перепрошивки МК. Разумеется, эту защиту можно отключить, поменяв значение в регистре Option bytes, однако в таком случае память программы будет затёрта, а значит её никто не сможет скопировать.

    Поменять значение в регистре можно при помощи всё той же ST-Link Utility, Target Option Bytes… Read out protection ENABLE .


    Отключить, соответственно, можно аналогичным способом. Это не совсем удобно, если устройств много. Можно включить защиту программно.

    Для реализации защиты удобно воспользоваться стандартной библиотекой периферии, а конкретно stm32f10x_flash.c содержит необходимую нам функцию. Сам регистр, а также работа с флеш-памятью описана в документе . Однако перед этим вспомним как реализована защита многократного включения заголовочных файлов. Мы использовали такие директивы препроцессора как:

    • #define - директива указывает препроцессору заменять строку в файле, однако если аргумент (то что стоит в конце) не указывается сам идентификатор (то что по середине) остётся в системе и может быть проверен другими директивами (т.е. можно написать условие, при котором определённый код будет выполняться или наоборот);
    • #ifndef - директиву можно прочитать как «если не определенно», однако нам больше подойдёт другая #ifdef - «если определенно»;
    • #endif - директива указывающая конец условия.

    Создадим идентификатор, который будет говорить, что данная сборка финальная. Пока данная строка закомментирована - код помещённый между #ifdef и #endif выполняться не будет.

    //#define RELEASE

    При конечной сборке достаточно просто раскомментировать строчку и прошить устройство.

    #ifdef RELEASE // code here #endif

    А теперь к самой сути. Мы уже разбирались как работать с внутренней флеш-памятью микроконтроллера. Перед записью битов защиты необходимо разблокировать доступ к памяти, затем необходимо произвести нужные операции и снова заблокировать доступ. Получается следующее:

    #ifdef RELEASE #warning "Protection is ON. Debug is OFF" if (FLASH_GetReadOutProtectionStatus() == RESET) { FLASH_Unlock(); FLASH_ReadOutProtection(ENABLE); FLASH_Lock(); } #endif

    ← Вернуться

    ×
    Вступай в сообщество «allcorp24.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «allcorp24.ru»