Простой цифровой блок питания. Лабораторный бп с индикацией на микроконтроллере Схема блока питания с индикацией

Подписаться
Вступай в сообщество «allcorp24.ru»!
ВКонтакте:

Данный блок питания построен на распространенной радиоэлементной базе и не содержит дефицитных деталей. Особенностью блока является то, что регулируемая микросхема DA4 не требует двухполярного питания. На микросхеме DA1 введена плавная регулировка выходного тока в интервале 0 … 3А (согласно схеме). Этот предел можно расширить и до 5А, пересчитав резистор R4. В авторском варианте резистор R7 заменен на подстроечный, т.к. плавная регулировка тока не требовалась. Ограничение тока при установленных номиналах деталей наступает при токе 3,2А и выходное напряжение упадет до 0. Ограничение тока подбирается резистором R7. Во время ограничения тока включается светодиод HL1, сигнализируя о коротком замыкании в нагрузке блока питания или превышении выбранного значения тока резистором R7. Если резистором R7 выбран порог срабатывания 1,5А, то при превышении данного порога на выходе микросхемы появиться низкое напряжение (-1,4В) и на базе транзистора VT2 установится 127мВ. Напряжение на выходе блока питания становиться равным » 1мкВ, что для большинства радиолюбительских задач нормально, а на блоке индикации напряжения будет стоять 00,0 вольт. Светодиод HL1 будет светиться. При нормальной работе узла перегрузки по току на базе микросхемы DA1 будет напряжение » 5,5В и диод HL1 светиться не будет.

Характеристики блока питания следующие:

Выходное напряжение регулируется от 0 до 30 В.

Выходной ток 4А.

Работа микросхемы DA4 особенностей не имеет и работает она в режиме однополярного питания. На ножку 7 подается 9В, ножка 4 соединена с общей шиной. В отличие от большинства микросхем серии 140УД… добиться нулевого уровня на выходе блока питания при таком включении весьма трудновато. Экспериментальным путем выбор сделан на микросхему КР140УД17А. При таком схемном решении удалось получить на выходе блока питания напряжение 156 мкВ, что на индикаторе будет отображаться как 00,0В.

Конденсатор С5 предотвращает возбуждение блока питания.

При исправных деталях и безошибочном монтаже блок питания начинает работать сразу. Резистором R12 установлен верхний уровень выходного напряжения, в пределах 30,03В. Стабилитрон VD5 применен для стабилизации напряжения на регулирующем резисторе R16 и, если блок питания работает без сбоев, от стабилитрона можно отказаться. Если резистор R7 применен как подстроечный, то им устанавливают порог срабатывания при превышении максимального тока.

Транзистор VT1 устанавливается на радиатор. Площадь радиатора рассчитывается по формуле: S = 10I n* (U вх. – U вых.), где S – площадь поверхности радиатора (см 2); I n – максимальный ток потребляемый нагрузкой; U вх. – входное напряжение (В); U вых. – выходное напряжение (В).

Схема блока питания показана на рис.1, печатная плата на рисунках 2 и 3.

Резисторы R7 и R12 многооборотные СП5-2. Вместо диодной сборки RS602 можно применить диодную сборку RS407, RS603, в зависимости от тока потребления, или диоды 242 с любым буквенным индексом, но разместить их надо отдельно от печатной платы. Входное напряжение на конденсаторе C1 может варьироваться в пределах 35… 40В без изменения номиналов деталей. Трансформатор Т1 должен быть рассчитан на мощность не менее 100 Вт., ток обмотки II не менее 5 А при напряжении 35 … 40 В. Ток обмотки III не менее 1 А. Обмотка III может быть с отводом от середины, который подключается к общей шине блока питания. В печатной плате предусмотрена для этой цели контактная площадка. Размер печатной платы блока питания 110 х 75 мм. Транзистор КТ825 составной. Его можно заменить транзисторами, как показано на рисунке 4.

Транзисторы могут быть с буквенными индексами Б – Г, соединенных по схеме Дарлингтона.

Резистор R4 – отрезок нихромовой проволоки диаметром 1мм и длиной около 7см (подбирается экспериментально). Микросхемы DA2, DA3 и DA5 допустимо заменить отечественными аналогами К142ЕН8А, КР1168ЕН5 и К142ЕН5А. Если панель цифровой индикации применяться не будет, то вместо микросхемы DA2 можно применить КР1157ЕН902 , а микросхему DA5 исключить. Резистор R16 переменный с зависимостью группы А. В авторском варианте применен переменный резистор ППБ-3А номиналом 2,2К - 5% .

Если не предъявлять к узлу защиты больших требований, а требоваться он будет только для защиты блока питания от перегрузки по току и КЗ, то такой узел можно применить по схеме на рис.6, а печатную плату немного переработать.

Узел защиты собран на транзисторах VT1 и VT2 разной структуры, резисторах R1 – R3 и конденсаторе С1. Ток короткого замыкания 16мА. Резистором R1 регулируют порог срабатывания защитного блока. При нормальной работе блока на эмиторе транзистора VT2 напряжение порядка 7 В и на работу блока питания влияния не оказывает. При срабатывание защиты напряжение на эмиторе транзистора VT2 падает до 1,2 В и через диод VD4 подается на базу транзистора VT2 блока питания. Напряжение на выходе блока питания падает до 0 В. Светодиод HL1 сигнализирует о срабатывании защиты. При нормальной работе блока питания и узла защиты светодиод – горит, при срабатывании защиты – гаснет. При использовании узла защиты на рис.6 микросхему DA3 и конденсаторы С3, С5 можно из схемы исключить.

Цифровая панель служить для визуального контроля напряжения и тока блока питания. Она может быть использована отдельно от блока питания с другими конструкциями, выполняя вышеназванные задачи.

Основой Цифровой панели служит микросхема ICL7135CPL - АЦП двойного интегрирования.

На элементах DD1.1 и DD1.2, резисторах R1,R2, конденсаторе С1 собран генератор, вырабатывающий прямоугольные импульсы с частотой приблизительно 120 кГц. Частоту генератора можно рассчитать по формуле F = 0,45/ R2C7.

На элементах DD1.3 и DD1.4, конденсаторах С2, С3, диодах VD1,VD2 собран инвертор напряжения, который преобразует выходное напряжение генератора в отрицательное, которое вполне достаточно для микросхемы DA2 рис.6. С выходов микросхемы DA2 В1 – В8 сигналы подаются на преобразователь двоично-десятичного кода в семисегментный на микросхеме DD1. С выходов микросхемы DD1 (9 – 15) преобразованный сигнал подается через гасящие резисторы на аноды сегментов индикаторов, которые соединены между собой параллельно. С выходов D1 – D5 микросхемы DA2 подаются управляющие сигналы на базы транзисторов VT2 – VT6, которые, в свою очередь, усиливая их, подают на катоды семисегментных светодиодов, заставляя каждый светодиод отображать определенную цифру. В отличии от микросхемы К572ПВ2, управляющую индикацией на 3 1/2 знака, микросхема ICL7135CPL управляет индикацией на 4 1/2 знака. Т.е., с помощью данной микросхемы можно разрабатывать измерительные устройства, индицирующие напряжение до 1000,9 вольта и ток до 19,999А или 199,99А.

Резистор R16 с помощью третьей секции переключателя управляет разрядными точками, в отжатом положении отображается разрядность напряжения, в нажатом положении разрядность тока. С помощью данной цифровой панели можно наблюдать значения тока от 1 мА до 10 А.

Входной делитель напряжения и тока, показанные на рис.6 собраны на резисторах R11 – R15 и датчике тока, резистор R10. Датчик тока можно изготовить из трех отрезков константанового провода Æ = 1 мм и длиной 50 мм. Разница в номинале не должна превышать 15 – 20%. Резисторы R11 и R14 типа СП5-2 и СП5-16ВА. Переключатель SB1 типа П2К. При заведомо исправных деталях и безошибочном монтаже цифровая панель начинает работать сразу. Резистором R4 на ножке 2 микросхемы DA2 выставляется напряжение U ref .=1,00В.

На индикаторах должно быть 000,0. Вход делителя напряжения и тока подключается к выходу блока питания, т.е. непосредственно к клеммам выходного напряжения. Резисторами R13 и R15 устанавливается грубо, заданное выходное напряжение блока питания, резистором R14 более точно, затем переключатель SB3 переводят в положение нажато и резистором R11 устанавливают значение тока на выходе блока питания, не забыв, при этом, подключить эквивалент нагрузки и установить ток в пределах 1А. После регулировки еще раз проверяют весь диапазон напряжения и тока на выходе блока питания.

Характеристики блока питания: Выходное напряжение регулируется от 0 до 30 вольт. Выходной ток 5 ампер. Падение напряжения при токе от 1 до 6 ампер ничтожно мало и на выходных показателях не отражается. Данный блок питания содержит три основных узла: внутренний сетевой узел питания VD1- VD4, C1- C7, DA1, DA2, узел защиты от перегрузки и короткого замыкания на VS1, R1- R4, VD3 и основной узел - регулируемый стабилизатор напряжения VT2- VT7, VD4-VD5, R4-R14, C8. Диод HL1 индицирует перегрузку по току или короткому замыканию в нагрузке.

Основной узел - регулируемый стабилизатор напряжения компенсационного типа. Он содержит входную дифференциальную ступень на транзисторах VT5, VT7, две ступени усиления на транзисторах VT3 и VT2, и регулирующий транзистор VT 1. Элементы VT4, VT6, VD4, VD5, R5 - R8, R10 образуют стабилизаторы тока. Конденсатор C8 предотвращает самовозбуждение блока. Выходное напряжение регулируется резистором R13. Верхняя граница напряжения - подстроечным резистором R14. Конструкция и детали. Мощность трансформатора T1 должна быть не менее 100 - 160 ватт, ток обмотки II - не менее 4 - 6 ампер. Ток обмотки III - в пределах 1...2 ампер. Транзистор VT1 следует устанавливать на ребристые алюминиевые радиаторы площадью более 1450 кв.см. Резистор R4 подбирают экспериментально, по току срабатывания защиты.
Резисторы R 7 и R 14 - многооборотные СП5-2. Резистор - R13 любой переменный. Микросхемы DA1 и DA2 можно заменить аналогичными отечественными КР142ЕН5А и КР1162ЕН5А. Их мощность позволяет стабилизированное напряжение ± 5 вольт для питания внешних нагрузок с током потребления до 1 ампер. Данной нагрузкой является цифровая панель, которая используется для цифровой индикации напряжения и тока в блоках питания. Если не использовать цифровую панель, то микросхемы DA1 и DA2 можно заменить микросхемами 78L05 и 79L05. Диоды VD3 - VD5 можно заменить на диоды КД522Б. Цифровая панель состоит из входного делителя напряжения и тока, микросхемы КР572ПВ2А и индикации из четырех семисегментных светодиодных индикаторов. Резистор R4 цифровой панели состоит из двух отрезков константанового провода =1 мм и длиной 50 мм. Разница в номинале резистора должна превышать 15 - 20 %. Резисторы R2 и R6 марки СП5-2 и СП5-16ВА. Переключатель режимов индикации напряжения и тока типа П2К. Микросхема КР572ПВ2А представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала. Для индикации использовались импортные светодиодные семисегментные индикаторы KINGBRIGT DA56 - 11 SRWA с общим анодом. Конденсаторы С2 - С4 желательно применять пленочные типа К73-17. Вместо импортных семисегментных светодиодов можно применить отечественные с общим анодом типа АЛС324Б.
Все радиокомпоненты устройства:
VD1 - VD4 - RS600
VD5 - VD8 - КС407А
VD9 - АЛ307Б
VD10 - КД102А
VD11 - 1N4148
VD12 - 1N4148
C1 - 10000 мкФ х 50 вольт
C2 - 100 мкФ
C3 - 100 мкФ
C4 - 10 мкФ
C5 - 10 мкФ
C6 - 10 n
C7 - 10 n
C8 - 33 n
R1 - 330 Ом
R2 - 3 кОм
R3 - 33 Ом
R4 - 2,4 кОм
R5 - 150 Ом
R6 - 2,2 кОм
R7 - 10 кОм
R8 - 330 кОм
R9 - 6,8 кОм
R10 - 1 кОм
R11 - 5,1 кОм
R12 - 5,1 кОм
R13 - 10 кОм
R14 - 2,2 кОм
VT1 - КТ827А
VT2 - КТ815Г
VT3 - КТ3107А
VT4 - КТ3102А
VT5 - КТ315Д
VT6 - КТ315Д
VT7 - КТ315Д

После включения питания и безошибочном монтаже, при исправных деталях должны засветиться сегменты индикации HG1- HG3. По вольтметру резистором R2 на выводе 36 микросхемы КР572ПВ2 выставляется напряжение 1 вольт. К ножкам (а) и (b) подключают блок питания. На выходе блока питания устанавливают напряжение 5...15 вольт и подбирают резистор R 10 (грубо), заменив его, на время, переменным.


С помощью резистора R8 устанавливают более точное показание напряжения. После чего, к выходу блока питания подсоединяют переменный резистор мощностью 10 ... 30 ватт, по амперметру выставляют ток равным 1 ампер и резистором R 6 выставляют значение на индикаторе. Показание должно быть 1,00. При токе 500 мА - 0,50, при токе 50 мА - 0,05. Таким образом, индикатор может индицировать ток от 10 мА, то есть 0,01.
Максимальное значение индикации тока 9,99 ампер. Для большей разрядности индикации можно применить схему на КР572ПВ6. Контактные площадки U и I на печатной плате цифровой панели, с помощью гибких проводников подключаются к точкам соответствующих индикаторов HG 2 и HG 1. Микросхему КР572ПВ2А можно заменить на импортную микросхему ICL7107CPL.

На рисунке 1 изображена схема лабораторного источника питания с цифровым вольтметром и амперметром, имеющим регулируемую защиту от перегрузок по току, электронную схему включения и выключения выходного напряжения, светодиодную индикацию выходного напряжения «есть — нет».

Параметры блока питания
Выходное напряжение …………………………… 1,25…27В
Выходной ток …………………………………………… до 5А (Зависит от величины выходного напряжения)
Установка тока защиты ……………………………. 0,01…5А
Внутреннее сопротивление ………………...... менее 0,01 Ом

Сетевой трансформатор блока питания в моем варианте — ТПП-322. Вы можете применять любой удовлетворяющий вашим требованиям, напряжение на обмотке III — 10В.IV — 26В. Выпрямительный мост VD1 — КЦ405Е. VD2 — составлен из четырех диодов с прямым током 10А. Я обычно применяю КД213А с пластинчатыми радиаторами. Стабилизатор собран на двух мощных транзисторах 2Т819А, транзисторе средней мощности КТ814Г и трех выводного микросхемного стабилизатора КР142ЕН12А. Смонтирован он навесным способом прямо на радиаторе. См. фото 1. На схеме стабилизатора не показаны резисторы, стоящие в эмиттерах мощных транзисторов, но показанные на фото. Я ставлю такие резисторы 0,1Ом только для контроля тока коллектора, никакого выравнивающего действия, имея такое малое сопротивление, они не оказывают. Так что при большом разбросе параметров регулирующих транзисторов подборка пары обязательна.

Максимальное выходное напряжение стабилизатора устанавливается подборкой резистора R5. Диод VD3 защищает стабилизатор от обратного напряжения в случае, если, например, идет зарядка аккумулятора и пропало напряжение первичной сети. Так же он уменьшает остаточное напряжение на его выходе до 0,9В, что уменьшает ток короткого замыкания. На транзисторе VT3 и ОУ DA1.1 собран преобразователь ток — напряжение. Резистор R9 обеспечивает минимальный ток стабилизатора в районе 30мА.
Основой цифрового блока индикации является микроконтроллер PIC16F873A. Напряжение, соответствующее проходящему через шунт току, с резистора R11 преобразователя через повторитель, собранный на микросхеме DA2.2, поступает на вход RA0 этого контроллера. Индицируется ток нагрузки средним по схеме светодиодным индикатором. Это же напряжение подается и на компаратор, собранный на операционном усилителе DA2.1. С помощью резистора R17 устанавливается значение тока срабатывания защиты. Напряжение с этого потенциометра подается для сравнения на инвертирующий вход компаратора, а также для измерения и дальнейшей индикации на вход RA2 контроллера. Сигнал для измерения выходного напряжения блока питания снимается с делителя R18 и R19.

На микросхеме таймера КР1006ВИ1 собран блок коммутации выходного напряжения и индикации включения стабилизатора, срабатывания защиты, выключения стабилизатора. При включении блока питания тумблером SA1 напряжение на выходе блока будет отсутствовать — блок питания будет находиться в дежурном режиме, об этом будет индицировать красный светодиод HL1. При нажатии на кнопку «Пуск» на выходе появится напряжение, засветится зеленый светодиод, погаснет красный. Стабилизатор перейдет в рабочий режим.
Защита стабилизатора работает следующим образом. Допустим, мы установили с помощью резистора R17 на индикаторе ток срабатывания защиты на уровне 3А, что соответствует напряжению на движке этого резистора и входе 6 микросхемы DA2.1 напряжению 3В. При прохождении через шунт тока хотя бы на 0,01А больше 3А на резисторе R11 выделится напряжение на 0,01В больше 3В. Этого будет достаточно для переключения компаратора и на его выходе 7 появится напряжение высокого уровня. Этот сигнал через резистор R16 подается на DA1 микросхемы КР1006ВИ1, что приводит к переключению внутреннего триггера таймера КР1006ВИ1, на его инверсном выходе появляется «1», открывается транзистор VT1 этой микросхемы и собой шунтирует вывод 1 микросхемного стабилизатора КР142ЕН12А на землю. Напряжение на выходе блока питания падает до минимума. Для восстановления работы стабилизатора необходимо нажать на кнопку «Пуск».
Печатная плата разрабатывалась только для цифрового блока. Детали, установленные на плате, обведены на схеме синей пунктирной линией. Блок коммутации и индикации собран на макетной плате.

Скачать схему, прошивку, рисунок печатной платы.

Блок питания 0…30в/5А с цифровой индикацией напряжения и тока

Описываемый блок питания предназначен для использования в радиолюбительской лаборатории. Несмотря на то, что в радиолюбительской литературе печаталось множество схем подобных устройств, данный блок питания не требователен к специализированным микросхемам и импортным элементам. В настоящее время вопрос приобретения микросхем по-прежнему актуален и в некоторых регионах, доставать их проблематично. Данный блок питания является модернизацией блока питания, описанным в (II). Блок питания собран только из доступных деталей.

Характеристики блока питания:
Выходное напряжение регулируется от 0 до 30 В.
Выходной ток 5 А.
Падение напряжения при токе от 1 А до 6 А ничтожно мало и на выходных показателях не отражается.

Схема блока питания показана на рис.1 ниже

Рис. 1

Данный блок питания содержит три основных узла: внутренний сетевой узел питания VD 1- VD 4, C 1- C 7, DA 1, DA 2, узел защиты от перегрузки и КЗ VS 1, R 1- R 4, VD 3 и основной узел - регулируемый стабилизатор напряжения VT 2- VT 7, VD 4- VD 5, R 4- R 14, C 8.

А так же к блоку питания добавляется цифровая панель, т.е. блок индикации, который показан на рис.5.

Внутренний сетевой узел питания построен по традиционной схеме с сетевым трансформатором Т1.

Узел защиты особенностей не имеет. Датчик тока рассчитывался на ток 3А, но можно его рассчитать и на 5А. Длительное время блок питания эксплуатировался с током 5А. Никаких сбоев в его работе не наблюдалось. Диод HL 1 индицирует перегрузку по току или КЗ в нагрузке.

Основной узел - регулируемый стабилизатор напряжения компенсационного типа. Он содержит входную дифференциальную ступень на транзисторах VT 5, VT 7, две ступени усиления на транзисторах VT 3 и VT 2, и регулирующий транзистор VT 1. Элементы VT 4, VT 6, VD 4, VD 5, R 5 - R 8, R 10 образуют стабилизаторы тока. Конденсатор С8 предотвращает самовозбуждение блока. Т.к. транзисторы VT 5 и VT 7 не подбирались одинаковыми, то имеется определенное «смещение нуля» этого каскада, которое и является минимальным напряжением блока питания. В небольших пределах оно регулируется с помощью подстроечного резистора R 7 и, в авторском варианте достигало на выходе блока питания приблизительно 47 m V . Выходное напряжение регулируется резистором R 13. Верхняя граница напряжения - подстроечным резистором R 14.

Рис. 2

Конструкция и детали. Мощность трансформатора Т1 должна быть не менее 100 - 160вт, ток обмотки II - не менее 4 - 6А. Ток обмотки III - не менее 1…2А. Диодную сборку RS 602 можно заменить на сборку RS 603 или диодами, рассчитанными на ток 10А. Диодный мост VD 2 можно заменить на любой из серии КЦ402 - КЦ405, которые приклеиваются со стороны печатных дорожек, зеркально конденсатору С1 и соединяются гибкими проводниками с контактными площадками VD 2 на плате. Транзистор VT 1 следует устанавливать на теплоотводе площадью не менее 1500см 2 . Площадь радиатора рассчитывается по формуле S = 10 I n (U вх. - U вых.), где S - площадь поверхности радиатора (см 2); I n - максимальный ток, потребляемый нагрузкой; U вх. - входное напряжение (В); U вых. - выходное напряжение (В).

Транзистор КТ825А - составной. Его можно заменить парой транзисторов, как показано на рисунке 2.

Данные транзисторы, соединенные по схеме Дарлингтона. Резистор R 4 подбирают экспериментально, по току срабатывания защиты. Резисторы R 7 и R 14 - многооборотные СП5-2. Резистор - R 13 любой переменный с линейной функциональной характеристикой (А). В авторском варианте применен переменный резистор ППБ-3А на 2,2К - 5% . Микросхемы DA 1 и DA 2 можно заменить аналогичными отечественными КР142ЕН5А и КР1162ЕН5А. Их мощность позволяет стабилизированное напряжение ± 5 В для питания внешних нагрузок с током потребления до 1А. Данной нагрузкой является цифровая панель, которая используется для цифровой индикации напряжения и тока в блоках питания. Если не использовать цифровую панель, то микросхемы DA 1 и DA 2 можно заменить микросхемами 78 L 05 и 79 L 05.

Печатная плата блока питания показана на рис.3 и рис.4.

Рис. 3

Рис. 4

Налаживание. Так как конструкция расположена на двух печатных платах, сначала настраивают блок питания, затем блок цифровой индикации.

Блок питания. При исправных деталях и отсутствие ошибок в монтаже устройство начинает работать сразу после включения. Его налаживание заключается в установлении необходимых пределов изменения выходного напряжения и тока срабатывания защиты. Движки резисторов R 7 и R 13 должны находиться в среднем положении. Резистором R 14 по вольтметру добиваются показания 15 вольт. Затем движок резистора R 13 переводят в минимальное положение и по вольтметру резистором R 7 устанавливают 0 вольт. Теперь движок резистора R 13 переводят в максимальное положение и резистором R 14 по вольтметру устанавливают напряжение 30 вольт. Резистор R 14 можно заменить постоянным, для этого в плате предусмотрено место - резистор R 15. В авторском варианте это резистор 360 Ом. Размер печатной платы блока питания 110 х 75 мм. Диоды VD 3 - VD 5 можно заменить на диоды КД522Б.

Цифровая панель состоит из входного делителя напряжения и тока, микросхемы КР572ПВ2А и индикации из четырех семисегментных светодиодных индикаторов, показанных на рис 5. Резистор R 4 цифровой панели состоит из двух отрезков константанового провода? =1мм и длиной 50мм. Разница в номинале резистора должна превышать 15 - 20%. Резисторы R 2 и R 6 марки СП5-2 и СП5-16ВА. Переключатель режимов индикации напряжения и тока типа П2К. Микросхема КР572ПВ2А представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала.

Для индикации использовались импортные светодиодные семисегментные индикаторы KINGBRIGT DA 56 - 11 SRWA с общим анодом. Конденсаторы С2 - С4 желательно применять пленочные типа К73-17. Вместо импортных семисегментных светодиодов можно применить отечественные с общим анодом типа АЛС324Б.

Рис. 5

Цифровая панель индикации напряжения и тока. После включения питания и безошибочном монтаже, при исправных деталях должны засветиться сегменты индикации HG 1- HG 3. По вольтметру резистором R 2 на ножке 36 микросхемы КР572ПВ2 выставляется напряжение 1 вольт. К ножкам (а) и (b) подключают блок питания. На выходе блока питания устанавливают напряжение 5 … 15 вольт и подбирают резистор R 10 (грубо), заменив его, на время, переменным. С помощью резистора R8 устанавливают более точное показание напряжения. После чего, к выходу блока питания подсоединяют переменный резистор мощностью 10 … 30 ватт, по амперметру выставляют ток равным 1А и резистором R 6 выставляют значение на индикаторе. Показание должно быть 1,00. При токе 500 мА - 0,50, при токе 50мА - 0,05. Таким образом, индикатор может индицировать ток от 10мА, т.е. 0,01. Максимальное значение индикации тока 9,99А.

Для большей разрядности индикации можно применить схему на КР572ПВ6. Размер печатной платы цифровой панели 80 х 50 мм., рис.6 и рис.7. Контактные площадки U и I на печатной плате цифровой панели, с помощью гибких проводников подключаются к точкам соответствующих индикаторов HG 2 и HG 1. Микросхему КР572ПВ2А можно заменить на импортную микросхему ICL7107CPL.

Рис. 6

Рис. 7

Литература:

Стабилизированный выпрямитель тока типа ТЭС 12 - 3 - НТ. г Горце Делчев. Болгария. 1984г.
. А.Патрин Лабораторный блок питания 0…30 В. РАДИО №10 2004г., стр.31.
. Импульсный блок питания на базе ПК. С.Митюрев. РАДИО №10 2004г. стр.33.
. Ануфриев А. Сетевой блок пита- ния для домашней лаборатории. — Радио, 1992, N 5, С.39-40.
. Стабилизатор напряжения с двойной защитой Ю. КУРБАКОВ, РАДИО февраль 2004г. стр.39.
. Бирюков С. Портативный цифровой мультиметр. - В помощь радиолюбителю, вып. 100 - ДОСААФ, 1988. с. 71-90.
. Бирюков С. Цифровые устройства на МОП интегральных микросхемах. - М.: Радио и связь, 1990:1996 (второе издание).
. Радио N 8 1998г. с.61-65

. BRIGHT LED ELECTRONICS CORP.

2000 BRIGHT LED ELECTRONICS CORP. Specifications subject to change without notice. www.brightled.com.tw

XI . С.Митюрев Импульсный блок питания на базе БП ПК.

Радио №10 2004г. с.33

А.Патрин г.Кирсанов Тамбовской обл.

Рассказать в:

Обычно, у хорошего лабораторного блока питания есть встроенные приборы, - вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку. В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5

Но существуют и другие микросхемы аналогичного действия. Например, есть микросхема СА3162Е, которая предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе. Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации. Чтобы получить законченный прибор нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семи зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами. Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Рис.1 Теперь ближе к схеме. На рисунке 1 показана схема вольтметра, измеряющего напряжение от 0 до 100V (0...99,9V). Измеряемое напряжение поступает на выводы 11-10 (вход) микросхемы D1 через делитель на резисторах R1-R3. Конденсатор СЗ исключает влияние помех на результат измерения.
Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.
Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоично-десятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения. Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1, Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.
Выходы дешифратора D2 через токоограни-чивающие резисторы R7-R13 подключены к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-ИЗ микросхемы D1. Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.


Рис.2 Схема амперметра показана на рисунке 2 . Схема практически такая же. за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0...9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.
Выбрав другие делители и шунты можно задать другие пределы измерения, например, 0...9.99V, 0...999mA, 0...999V, 0...99.9А, это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Так же, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (настольный мультиметр). При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.
Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть напичие такого напряжения при токе не ниже 150mA.

На рисунке 3 показана схема подключения измерителей в лабораторном источнике.
Теперь о деталях. Пожалуй, самое трудно-доставаемое, это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.
С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VT1-VT3 перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.
Теперь о налаживании. В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, и подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр- Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мульти-метра.
Далее, налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W. Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.
Можно выполнить калибровку и по образцовому амперметру, но мне показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.
Рис.4
По этой же схеме можно сделать и автомобильный вольтметр. Схема такого прибора показана на рисунке 4 . Схема от показанной на рисунке 1 отличается только входом и схемой питания. Этот прибор теперь питается от измеряемого напряжения, то есть, измеряет напряжение, поступающее на него как питающее. Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в схеме на рисунке 1, то есть для измерения в пределах 0...99.9V. Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7...16V.
Питание 5V формируется из того же источника, с помощью стабилизатора А1 Раздел.

← Вернуться

×
Вступай в сообщество «allcorp24.ru»!
ВКонтакте:
Я уже подписан на сообщество «allcorp24.ru»