Как научиться решать интегралы с нуля. Методы решения неопределенных интегралов

Подписаться
Вступай в сообщество «allcorp24.ru»!
ВКонтакте:

Процесс решения интегралов в науке под названием "математика" называется интегрированием. С помощью интегрирования можно находить некоторые физические величины: площадь, объем, массу тел и многое другое.

Интегралы бывают неопределенными и определенными. Рассмотрим вид определенного интеграла и попытаемся понять его физический смысл. Представляется он в таком виде: $$ \int ^a _b f(x) dx $$. Отличительная черта написание определенного интеграла от неопределенного в том, что есть пределы интегрирования a и b. Сейчас узнаем для чего они нужны, и что всё-таки значит определенный интеграл. В геометрическом смысле такой интеграл равен площади фигуры, ограниченной кривой f(x), линиями a и b, и осью Ох.

Из рис.1 видно, что определенный интеграл - это и есть та самая площадь, что закрашена серым цветом. Давайте, проверим это на простейшем примере. Найдем площадь фигуры на изображении представленном ниже с помощью интегрирования, а затем вычислим её обычным способом умножения длины на ширину.

Из рис.2 видно, что $ y=f(x)=3 $, $ a=1, b=2 $. Теперь подставим их в определение интеграла, получаем, что $$ S=\int _a ^b f(x) dx = \int _1 ^2 3 dx = $$ $$ =(3x) \Big|_1 ^2=(3 \cdot 2)-(3 \cdot 1)=$$ $$=6-3=3 \text{ед}^2 $$ Сделаем проверку обычным способом. В нашем случае длина = 3, ширина фигуры = 1. $$ S = \text{длина} \cdot \text{ширина} = 3 \cdot 1 = 3 \text{ед}^2 $$ Как видим, всё отлично совпало.

Появляется вопрос: как решать интегралы неопределенные и какой у них смысл? Решение таких интегралов - это нахождение первообразных функций. Этот процесс противоположный нахождению производной. Для того, чтобы найти первообразную можно использовать нашу помощь в решении задач по математике или же необходимо самостоятельно безошибочно вызубрить свойства интегралов и таблицу интегрирования простейших элементарных функций. Нахождение выглядит так $$ \int f(x) dx = F(x) + C \text{где} F(x) $ - первообразная $ f(x), C = const $.

Для решения интеграла нужно интегрировать функцию $ f(x) $ по переменной. Если функция табличная, то записывается ответ в подходящем виде. Если же нет, то процесс сводится к получению табличной функции из функции $ f(x) $ путем хитрых математических преобразований. Для этого есть различные методы и свойства, которые рассмотрим далее.

Итак, теперь составим алгоритм как решать интегралы для чайников?

Алгоритм вычисления интегралов

  1. Узнаем определенный интеграл или нет.
  2. Если неопределенный, то нужно найти первообразную функцию $ F(x) $ от подынтегральной $ f(x) $ с помощью математических преобразований приводящих к табличному виду функцию $ f(x) $.
  3. Если определенный, то нужно выполнить шаг 2, а затем подставить пределы $ а $ и $ b $ в первообразную функцию $ F(x) $. По какой формуле это сделать узнаете в статье "Формула Ньютона Лейбница".

Примеры решений

Итак, вы узнали как решать интегралы для чайников, примеры решения интегралов разобрали по полочкам. Узнали физический и геометрический их смысл. О методах решения будет изложено в других статьях.

Для решения упражнений по теме «Интегрирование» рекомендуется следующая литература:

1. . Математический анализ. Неопределённый интеграл. Определённый интеграл: учебное пособие . – М.: МГИУ, 2006. – 114 с.: ил. 20.

2. , и др. Задачи и упражнения по математическому анализу для втузов/Под ред. . (любой год издания).

Семинар №1.

Нахождение неопределённых интегралов с помощью основных правил интегрирования и таблицы неопределённых интегралов.

https://pandia.ru/text/78/291/images/image002_164.gif" width="113 height=27" height="27">, то,

где С – произвольная постоянная,

2) , где k – постоянная величина,

4) .

https://pandia.ru/text/78/291/images/image008_45.gif" width="24" height="28 src="> Под знаком интеграла стоит произведение двух постоянных, которое есть, естественно, тоже постоянная. Согласно основному правилу интегрирования 2), выносим её за знак интеграла.

(2) Используем формулу 1) Таблицы интегралов.

https://pandia.ru/text/78/291/images/image010_36.gif" width="569" height="44 src=">.gif" width="481" height="75 src=">

https://pandia.ru/text/78/291/images/image014_25.gif" width="255" height="32 src=">. В нашем случае , https://pandia.ru/text/78/291/images/image017_22.gif" width="75 height=47" height="47">, то .

(3) Воспользуемся основным правилом 3) интегрирования (интеграл от суммы функций равен сумме интегралов от этих функций).

(4) Пользуемся формулой 1) Таблицы интегралов и основным правилом интегрирования 4), положив , т. е.

.

https://pandia.ru/text/78/291/images/image022_9.gif" width="551" height="91 src=">

https://pandia.ru/text/78/291/images/image024_8.gif" width="449" height="101 src=">.

(1) Воспользуемся формулой сокращённого умножения

https://pandia.ru/text/78/291/images/image026_7.gif" width="103" height="37 src=">).

(2) Пользуемся свойством степеней ().

(4) В каждом из слагаемых под знаком интеграла пользуемся свойством степеней (https://pandia.ru/text/78/291/images/image029_7.gif" width="325" height="56 src=">.

(1) Поменяем два слагаемых местами в знаменателе подынтегрального выражения, чтобы получить табличный интеграл.

(2) Воспользуемся формулой 6) Таблицы интегралов..gif" width="364 height=61" height="61">.

(1) Поменяем два слагаемых местами под знаком корня в знаменателе подынтегрального выражения, чтобы получить табличный интеграл.

(2) Воспользуемся формулой 11) Таблицы интегралов.

https://pandia.ru/text/78/291/images/image033_5.gif" width="625" height="75 src=">

https://pandia.ru/text/78/291/images/image035_5.gif" width="459" height="67 src=">

https://pandia.ru/text/78/291/images/image037_5.gif" width="535" height="67 src=">

(1) Подставляем .

(2) Из основного тригонометрического тождества имеем .

(3) Почленно делим каждое слагаемое числителя на знаменатель.

(4) Воспользуемся основным правилом 3) интегрирования (интеграл от суммы функций равен сумме интегралов от этих функций).

(5) Пользуемся формулой 15) Таблицы интегралов и основным правилом интегрирования 4), положив , т. е. .

Упражнения. №№ 000, 1034, 1036, 1038, 1040, 1042, 1044, 1046, 1048(а) из задачника .

Семинар №2

Интегрирование методом замены переменной

Если интеграл не является табличным, то часто используют замену переменной, а именно, полагая https://pandia.ru/text/78/291/images/image044_5.gif" width="39" height="27 src="> - непрерывно дифференцируемая функция. Подставляя в интеграл, будем иметь

Функцию https://pandia.ru/text/78/291/images/image043_5.gif" width="71" height="27"> получаем и подставляем в первообразную, зависящую от переменной t , получая в итоге первообразную зависящую от первоначальной переменной x , т. е. возвращаемся к старой переменной. Возвращаться к старой переменной следует обязательно!

В этом примере уже указана замена переменной .

https://pandia.ru/text/78/291/images/image049_5.gif" width="525" height="115 src=">

https://pandia.ru/text/78/291/images/image051_3.gif" width="408" height="83 src=">

https://pandia.ru/text/78/291/images/image053_3.gif" width="256 height=67" height="67">, так как .

При подстановке имеем .

(2) Умножаем числитель и знаменатель на .

(3) Этот интеграл «похож» на табличные 9) и 10), но заметим, что в том и другом коэффициент при квадрате неизвестного равен 1. Поэтому под корнем выносим коэффициент при за скобки.

(4) Пользуемся свойством корня квадратного из произведения двух положительных сомножителей: если и , то .

(5) Выделяем под знаком интеграла множитель.

(6) Выносим этот множитель за знак интеграла, согласно Основному правилу 2) интегрирования.

(7) Согласно формуле 10) Таблицы неопределённых интегралов получаем ответ, зависящий от переменной . Здесь , .

(8) Возвращаемся к старой переменной, проводя обратную замену, т. е..gif" width="611" height="115 src="> =

https://pandia.ru/text/78/291/images/image067_2.gif" width="47" height="21"> имеем , для нашего примера .

(2) Пользуемся основным логарифмическим тождеством: https://pandia.ru/text/78/291/images/image071_2.gif" width="111 height=32" height="32">.

(3) Приводим к общему знаменателю выражение, стоящее в знаменателе.

(4) Умножаем числитель и знаменатель подынтегрального выражения на https://pandia.ru/text/78/291/images/image072_2.gif" width="581" height="53 src=">

https://pandia.ru/text/78/291/images/image074_2.gif" width="179" height="53 src=">. Запомним это на будущее.

В этом примере также замена переменной уже указана.

https://pandia.ru/text/78/291/images/image076_2.gif" width="621" height="64 src=">.

Очень часто бывает целесообразно попробовать замену , если выражение имеется под знаком интеграла или замену https://pandia.ru/text/78/291/images/image080_2.gif" width="80" height="33">где - некоторое целое положительное число Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциала .

Если подынтегральная функция зависит от выражения , то можно дать некоторые рекомендации по замене переменной.

https://pandia.ru/text/78/291/images/image085.jpg" width="600" height="372 src=">

https://pandia.ru/text/78/291/images/image087_2.gif" width="557" height="68 src=">

https://pandia.ru/text/78/291/images/image089_2.gif" width="343" height="64 src=">

https://pandia.ru/text/78/291/images/image091_2.gif" width="591" height="101 src=">

https://pandia.ru/text/78/291/images/image093_2.gif" width="597" height="101 src=">

https://pandia.ru/text/78/291/images/image095_2.gif" width="113" height="27">..gif" width="108" height="27 src=">.

В самом деле,

https://pandia.ru/text/78/291/images/image099_2.gif" width="125" height="27 src=">

То есть в случае, когда подынтегральная функция имеет вид https://pandia.ru/text/78/291/images/image100_2.gif" width="48" height="27"> под знак дифференциала:

https://pandia.ru/text/78/291/images/image102_2.gif" width="292" height="29 src=">. Далее делаем замену переменной .

Такого рода преобразование иногда называют «подведение под знак дифференциала».

Прежде чем разбирать примеры на эту тему, приведём таблицу, которую можно получить из таблицы неопределённых интегралов

https://pandia.ru/text/78/291/images/image105_1.gif" width="96" height="53 src=">.gif" width="135" height="53 src=">,

https://pandia.ru/text/78/291/images/image109_1.gif" width="147" height="55 src=">,

https://pandia.ru/text/78/291/images/image111_1.gif" width="172" height="60 src=">,

https://pandia.ru/text/78/291/images/image113_1.gif" width="155" height="23 src=">,

https://pandia.ru/text/78/291/images/image115_1.gif" width="128" height="55 src=">,

https://pandia.ru/text/78/291/images/image117_1.gif" width="209" height="53 src=">,

https://pandia.ru/text/78/291/images/image119_1.gif" width="215" height="53 src="> и т. д.

https://pandia.ru/text/78/291/images/image121_1.gif" width="393" height="48 src=">.

https://pandia.ru/text/78/291/images/image123_1.gif" width="587" height="101 src=">

https://pandia.ru/text/78/291/images/image125_1.gif" width="155" height="27">, то целесообразна замена . Тогда имеем

https://pandia.ru/text/78/291/images/image128_1.gif" width="592" height="88 src=">=

.

https://pandia.ru/text/78/291/images/image133_1.gif" width="560" height="60 src=">

.

https://pandia.ru/text/78/291/images/image136_1.gif" width="560" height="59 src=">.

Упражнения №№ 000, 1088, 1151, 1081, 1082, 1094.

Семинар №4

Метод интегрирования по частям в неопределённом интеграле

Этот метод основан на следующей теореме.

Теорема. Пусть функции и имеют конечные производные в промежутке , и в этом промежутке существует первообразная для функции. Тогда в промежутке существует первообразная для функции и справедлива формула

Эту формулу можно записать в виде

.

Задача при интегрировании по частям заключается в том, чтобы подынтегральное выражение представить в виде произведения так, чтобы интеграл был проще, чем , т. е. нельзя выбирать и произвольно, так как можно получить более сложный интеграл https://pandia.ru/text/78/291/images/image149_1.gif" width="45 height=29" height="29">.

Практика показывает, что большая часть интегралов «берущихся» по частям может быть разбита на три группы:

https://pandia.ru/text/78/291/images/image151.jpg" width="636" height="396 src=">

Эти интегралы находятся двукратным интегрированием по частям.

Замечание . В первой группе интегралов для интегралов вместо может быть многочлен зависящий от необязательно целой положительной степени (например https://pandia.ru/text/78/291/images/image156_0.gif" width="33" height="28 src=">.gif" width="35" height="45 src="> и т. д.).

В этом примере разбиение на множители и единственно возможное, что бывает не очень часто.

При нахождении выражения для в методе интегрирования по частям постоянную C можно положить равной нулю (см. стр.22).

https://pandia.ru/text/78/291/images/image163_0.gif" width="552" height="57 src=">

https://pandia.ru/text/78/291/images/image165_0.gif" width="623" height="176 src=">

https://pandia.ru/text/78/291/images/image167_0.gif" width="512" height="53 src=">

https://pandia.ru/text/78/291/images/image169_0.gif" width="25" height="23"> можно представить как ..gif" width="93" height="53 src=">.

https://pandia.ru/text/78/291/images/image174_0.gif" width="503" height="33 src=">.

Это пример также из второй группы интегралов.

https://pandia.ru/text/78/291/images/image176_0.gif" width="591" height="72 src=">

https://pandia.ru/text/78/291/images/image178_0.gif" width="197" height="28 src=">.

Таким образом, получаем уравнение относительно искомого интеграла https://pandia.ru/text/78/291/images/image180_0.gif" width="212 height=28" height="28">.

Переносим слагаемое в левую часть уравнения и получаем эквивалентное уравнение

решая которое, получаем ответ:

.

Этот пример из третьей группы интегралов. Здесь мы дважды применили интегрирование по частям.

Упражнения. №№ 000, 1214, 1226, 1221, 1217, 1218, 1225, 1223,

Семинар №5

Вычисление определённых интегралов

Вычисление определённых интегралов основано на свойствах определённого интеграла и формуле Ньютона-Лейбница.

Приведём основные свойства определённого интеграла

1) Каковы бы ни были числа a , b , c всегда имеет место равенство

https://pandia.ru/text/78/291/images/image185_0.gif" width="188" height="61 src=">.

3) Определённый интеграл от алгебраической суммы двух (конечного числа) функций равен алгебраической сумме их интегралов, т. е.

https://pandia.ru/text/78/291/images/image187_0.gif" width="47" height="27 src="> есть некоторая первообразная от непрерывной функции , то справедлива формула

.

Вычисление определённого интеграла как предела интегральных сумм – достаточно трудоёмкое дело даже для элементарных функций. Формула Ньютона-Лейбница позволяет свести вычисление определённого интеграла к нахождению неопределённого интеграла, когда известна первообразная подынтегральной функции. Значение определённого интеграла равно разности значений первообразной на верхнем и нижнем пределе интегрирования.

Примеры вычисления определённого интеграла в простейших случаях

https://pandia.ru/text/78/291/images/image191_0.gif" width="28" height="71 src=">.gif" width="387" height="61 src=">.gif" width="40" height="28 src=">.gif" width="41" height="21 src=">.gif" width="541" height="67 src=">

https://pandia.ru/text/78/291/images/image199.jpg" width="600" height="145 src=">

.

При использовании метода замены переменной в определённом интеграле надо иметь в виду два момента.

https://pandia.ru/text/78/291/images/image202.jpg" width="648" height="60 src=">

https://pandia.ru/text/78/291/images/image204.gif" width="319" height="61 src=">.gif" width="89" height="32 src=">.gif" width="525" height="28 src=">.

Интегрирование по частям в определённом интеграле

При использовании формулы интегрирования по частям в определённом интеграле иногда оказывается, например, что , поэтому сразу же следует вычислять выражение , не откладывая это до тех пор, пока не будет найдена вся первообразная.

https://pandia.ru/text/78/291/images/image213.gif" width="29" height="91 src=">.gif" width="221" height="53 src=">.gif" width="365" height="59 src=">.

Упражнения . №№ 000, 1522, 1525, 1531, 1583, 1600,1602.

Семинар № 6

Несобственные интегралы

Несобственные интегралы первого рода

Несобственные интегралы первого рода – это интегралы с бесконечными пределами (или одним бесконечным пределом). Это интегралы вида , , . Пусть функция интегрируема на любом конечном отрезке, заключённом внутри промежутка интегрирования. Тогда, по определению

https://pandia.ru/text/78/291/images/image222.gif" width="227 height=60" height="60">.gif" width="235 height=76" height="76">.

Если приведённые пределы существуют и конечны, то говорят, что несобственные интегралы сходятся. Если не существуют или бесконечны, то говорят, что расходятся (подробнее см. стр.72-76).

https://pandia.ru/text/78/291/images/image226.gif" width="47" height="21 src="> имеем

https://pandia.ru/text/78/291/images/image228.gif" width="31" height="71 src=">.gif" width="191" height="88 src=">

Если https://pandia.ru/text/78/291/images/image232.gif" width="188" height="60 src=">.gif" width="199" height="43 src=">.

Таким образом, данный интеграл сходится при и расходится при.

Исследовать на сходимость несобственный интеграл

https://pandia.ru/text/78/291/images/image239.gif" width="31" height="71 src=">=

https://pandia.ru/text/78/291/images/image241.gif" width="417" height="56 src=">,

Исследовать на сходимость несобственный интеграл

.

https://pandia.ru/text/78/291/images/image244.gif" width="303" height="61">.gif" width="523" height="59 src=">,

т. е. данный несобственный интеграл сходится.

Неопределенный интеграл.
Подробные примеры решений

На данном уроке мы начнём изучение темы Неопределенный интеграл , а также подробно разберем примеры решений простейших (и не совсем) интегралов. В этой статье я ограничусь минимумом теории , и сейчас наша задача – научиться решать интегралы.

Что нужно знать для успешного освоения материала? Для того чтобы справиться с интегральным исчислением Вам необходимо уметь находить производные, минимум, на среднем уровне. Поэтому, если материал запущен, то рекомендую сначала внимательно ознакомиться с уроками Как найти производную? и Производная сложной функции . Не лишним опытом будет, если у Вас за плечами несколько десятков (лучше – сотня) самостоятельно найденных производных. По-крайне мере, Вас не должны ставить в тупик задания на дифференцирование простейших и наиболее распространенных функций. Казалось бы, при чем здесь вообще производные, если речь в статье пойдет об интегралах?! А дело вот в чем. Дело в том, что нахождение производных и нахождение неопределенных интегралов (дифференцирование и интегрирование) – это два взаимно обратных действия , как, например, сложение/вычитание или умножение/деление. Таким образом, без навыка (+ какого-никакого опыта) нахождения производных, к сожалению, дальше не продвинуться.

В этой связи нам потребуются следующие методические материалы: Таблица производных и Таблица интегралов . Справочные пособия можно открыть, закачать или распечатать на странице Математические формулы и таблицы .

В чем сложность изучения неопределенных интегралов? Если в производных имеют место строго 5 правил дифференцирования, таблица производных и довольно четкий алгоритм действий, то в интегралах всё иначе. Существуют десятки способов и приемов интегрирования. И, если способ интегрирования изначально подобран неверно (т.е. Вы не знаете, как решать), то интеграл можно «колоть» буквально сутками, как самый настоящий ребус, пытаясь приметить различные приемы и ухищрения. Некоторым даже нравится. Между прочим, это не шутка, мне довольно часто приходилось слышать от студентов мнение вроде «У меня никогда не было интереса решить предел или производную, но вот интегралы – совсем другое дело, это увлекательно, всегда есть желание «взломать» сложный интеграл». Стоп. Хватит чёрного юмора, переходим к этим самым неопределенным интегралам.

Коль скоро способов решения существует очень много, то с чего же начать изучение неопределенных интегралов чайнику? В интегральном исчислении существуют, на мой взгляд, три столпа или своеобразная «ось», вокруг которой вращается всё остальное. В первую очередь следует хорошо разобраться в простейших интегралах (эта статья). Потом нужно детально проработать урок . ЭТО ВАЖНЕЙШИЙ ПРИЁМ! Может быть, даже самая важная статья из всех моих статей, посвященных интегралам. И, в-третьих, обязательно следует ознакомиться с методом интегрирования по частям , поскольку с помощью него интегрируется обширный класс функций. Если Вы освоите хотя бы эти три урока, то уже «не два». Вам могут «простить» незнание интегралов от тригонометрических функций , интегралов от дробей , интегралов от дробно-рациональных функций , интегралов от иррациональных функций (корней) , но вот если «сесть в лужу» на методе замены или методе интегрирования по частям – то это будет очень и очень скверно.

В Рунете сейчас весьма распространены демотиваторы. В контексте изучения интегралов, наоборот, просто необходим МОТИВАТОР . Как в том анекдоте про Василия Ивановича, который и Петьку мотивировал, и Аньку мотивировал. Уважаемые лентяи, халявщики и другие нормальные студенты, обязательно прочитайте нижеследующее. Знания и навыки по неопределенному интегралу потребуются в дальнейшей учебе, в частности, при изучении определенного интеграла , несобственных интегралов , дифференциальных уравнений на 2 курсе. Необходимость взять интеграл возникает даже в теории вероятностей ! Таким образом, без интегралов путь на летнюю сессию и 2 курс БУДЕТ РЕАЛЬНО ЗАКРЫТ . Я серьезно. Вывод таков. Чем больше интегралов различных типов вы прорешаете, тем легче будет дальнейшая жизнь . Да, это займет довольно много времени, да, порой, не хочется, да, иногда «да фиг с ним, с этим интегралом, авось не попадется». Но, воодушевлять и греть душу должна следующая мысль, ваши усилия окупятся сполна! Вы будете, как орехи щелкать дифференциальные уравнения и легко расправляться с интегралами, которые встретятся в других разделах высшей математики. Качественно разобравшись с неопределенным интегралом, ВЫ ФАКТИЧЕСКИ ОСВАИВАЕТЕ ЕЩЕ НЕСКОЛЬКО РАЗДЕЛОВ ВЫШКИ .

И поэтому я просто не мог не создать интенсивный курс по технике интегрирования, который получился на удивление коротким – желающие могут воспользоваться pdf-книгой и подготовиться ОЧЕНЬ быстро. Но материалы сайта ни в коем случае не хуже!

Итак, начинаем с простого. Посмотрим на таблицу интегралов. Как и в производных, мы замечаем несколько правил интегрирования и таблицу интегралов от некоторых элементарных функций. Нетрудно заметить, что любой табличный интеграл (да и вообще любой неопределенный интеграл) имеет вид:

Сразу разбираемся в обозначениях и терминах:

– значок интеграла.

– подынтегральная функция (пишется с буквой «ы»).

– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.

– подынтегральное выражение или «начинка» интеграла.

первообразная функция .

– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .

Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей .

Еще раз посмотрим на запись:

Посмотрим в таблицу интегралов.

Что происходит? Левые части у нас превращаются в другие функции: .

Упростим наше определение.

Решить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей .

Возьмем, например, табличный интеграл . Что произошло? превратился в функцию .

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл , первообразная функция с теоретической точки зрения. Достаточно просто осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.

Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно , справедливо следующее :

Иными словами, если продифференцировать правильный ответ, то обязательно должна получиться исходная подынтегральная функция .

Вернемся к тому же табличному интегралу .

Убедимся в справедливости данной формулы. Берем производную от правой части:

– исходная подынтегральная функция.

Вот, кстати, стало понятнее, почему к функции всегда приписывается константа . При дифференцировании константа всегда превращается в ноль.

Решить неопределенный интеграл – это значит найти множество всех первообразных, а не какую-то одну функцию. В рассматриваемом табличном примере , , , и т. д. – все эти функции являются решением интеграла . Решений бесконечно много, поэтому записывают коротко:

Таким образом, любой неопределенный интеграл достаточно легко проверить (в отличие от производных, где хорошую стопудовую проверку можно осуществить разве что с помощью математических программ). Это некоторая компенсация за большое количество интегралов разных видов.

Переходим к рассмотрению конкретных примеров. Начнем, как и при изучении производной,
с двух правил интегрирования, которые также называют свойствами линейности неопределенного интеграла:

– постоянный множитель можно (и нужно) вынести за знак интеграла.

– интеграл от алгебраической суммы двух функций равен алгебраической сумме двух интегралов от каждой функции в отдельности. Данное свойство справедливо для любого количества слагаемых.

Как видите, правила, в принципе, такие же, как и для производных.

Пример 1


Решение: Удобнее переписать его на бумагу.

(1) Применяем правило . Не забываем записать значок дифференциала под каждым интегралом. Почему под каждым? – это полноценный множитель , если расписывать решение совсем детально, то первый шаг следует записать так:

(2) Согласно правилу , выносим все константы за знаки интегралов. Обратите внимание, что в последнем слагаемом – это константа, её также выносим.
Кроме того, на данном шаге готовим корни и степени для интегрирования. Точно так же, как и при дифференцировании, корни надо представить в виде . Корни и степени, которые располагаются в знаменателе – перенести вверх.

! Примечание: в отличие от производных, корни в интегралах далеко не всегда следует приводить к виду , а степени переносить вверх. Например, – это готовый табличный интеграл, и всякие китайские хитрости вроде совершенно не нужны. Аналогично: – тоже табличный интеграл, нет никакого смысла представлять дробь в виде . Внимательно изучите таблицу!

(3) Все интегралы у нас табличные. Осуществляем превращение с помощью таблицы, используя формулы: , и .
Особое внимание обращаю на формулу интегрирования степенной функции , она встречается очень часто, ее лучше запомнить. Следует отметить, что табличный интеграл – частный случай этой же формулы: .
Константу достаточно приплюсовать один раз в конце выражения (а не ставить их после каждого интеграла) .
(4) Записываем полученный результат в более компактном виде, все степени вида снова представляем в виде корней, степени с отрицательным показателем – сбрасываем обратно в знаменатель.

Проверка. Для того чтобы выполнить проверку нужно продифференцировать полученный ответ:

Получена исходная подынтегральная функция , значит, интеграл найден правильно. От чего плясали, к тому и вернулись. Знаете, очень хорошо, когда история с интегралом заканчивается именно так.

Время от времени встречается немного другой подход к проверке неопределенного интеграла, от ответа берется не производная, а дифференциал :

Кто с первого семестра понял, тот понял, но сейчас нам важны не теоретические тонкости, а важно то, что с этим дифференциалом дальше делать. Его необходимо раскрыть, и с формально-технической точки зрения – это почти то же самое, что найти производную. Дифференциал раскрывается следующим образом: значок убираем, справа над скобкой ставим штрих, в конце выражения приписываем множитель :

Получено исходное подынтегральное выражение , значит, интеграл найден правильно.

Второй способ проверки мне нравится меньше, так как приходится дополнительно рисовать большие скобки и тащить значок дифференциала до конца проверки. Хотя он корректнее или «солиднее» что ли.

На самом деле я вообще мог умолчать о втором способе проверки. Дело не в способе, а в том, что мы научились раскрывать дифференциал. Еще раз.

Дифференциал раскрывается следующим образом :

1) значок убираем;
2) справа над скобкой ставим штрих (обозначение производной);
3) в конце выражения приписываем множитель .

Например:

Запомните это. Рассмотренный приём потребуется нам очень скоро.

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

Когда мы находим неопределенный интеграл, то ВСЕГДА стараемся сделать проверку , тем более, для этого есть прекрасная возможность. Далеко не все типы задач в высшей математике является подарком с этой точки зрения. Неважно, что часто в контрольных заданиях проверки не требуется, её никто, и ничто не мешает провести на черновике. Исключение можно сделать лишь тогда, когда не хватает времени (например, на зачете, экзамене). Лично я всегда проверяю интегралы, а отсутствие проверки считаю халтурой и некачественно выполненным заданием.

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Решение: Анализируя интеграл, мы видим, что у нас произведение двух функций, да еще и возведение в степень целого выражения. К сожалению, на поприще интегральной битвы нет хороших и удобных формул для интегрирования произведения и частного , .

А поэтому, когда дано произведение или частное, всегда имеет смысл посмотреть, а нельзя ли преобразовать подынтегральную функцию в сумму?

Рассматриваемый пример – тот случай, когда можно. Сначала я приведу полное решение, комментарии будут ниже.

(1) Используем старую-добрую формулу квадрата суммы , избавляясь от степени.

(2) Вносим в скобку, избавляясь от произведения.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

Пример 5

Найти неопределенный интеграл. Выполнить проверку.

В данном примере подынтегральная функция представляет собой дробь. Когда мы видим в подынтегральном выражении дробь, то первой мыслью должен быть вопрос: А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы её упростить?

Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, а значит, можно почленно разделить числитель на знаменатель:

Действия с дробными степенями я не комментирую, так как о них неоднократно шла речь в статьях о производной функции. Если Вас все-таки ставит в тупик такой пример, как , и ни в какую не получается правильный ответ , то рекомендую обратиться к школьным учебникам. В высшей математике дроби и действия с ними встречаются на каждом шагу.

Также обратите внимание, что в решении пропущен один шаг, а именно, применение правил , . Обычно уже при начальном опыте решения интегралов данные свойства считают само собой разумеющимися и не расписывают подробно.

Пример 6

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

В общем случае с дробями в интегралах не всё так просто, дополнительный материал по интегрированию дробей некоторых видов можно найти в статье Интегрирование некоторых дробей .

! Но, прежде чем перейти к вышеуказанной статье, необходимо ознакомиться с уроком Метод замены в неопределенном интеграле . Дело в том, что подведение функции под дифференциал или метод замены переменной является ключевым моментом в изучении темы, поскольку встречается не только «в чистых заданиях на метод замены», но и во многих других разновидностях интегралов.

Очень хотелось включить еще несколько примеров в данный урок, но вот сижу сейчас, печатаю этот текст в Вёрде и замечаю, что статья уже выросла до приличных размеров.
А поэтому вводный курс интегралов для чайников подошел к концу.

Желаю успехов!

Решения и ответы:

Пример 2: Решение :


Пример 4: Решение :

В данном примере мы использовали формулу сокращенного умножения

Пример 6: Решение :


Я выполнил проверку, а Вы? ;)

Определённым интегралом от непрерывной функции f (x ) на конечном отрезке [a , b ] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись

Как видно на графиках внизу (приращение первообразной функции обозначено ), определённый интеграл может быть как положительным, так и отрицательным числом (Вычисляется как разность между значением первообразной в верхнем пределе и её же значением в нижнем пределе, т. е. как F (b ) - F (a )).

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a , b ] – отрезком интегрирования.

Таким образом, если F (x ) – какая-нибудь первообразная функция для f (x ), то, согласно определению,

(38)

Равенство (38) называется формулой Ньютона-Лейбница . Разность F (b ) – F (a ) кратко записывают так:

Поэтому формулу Ньютона-Лейбница будем записывать и так:

(39)

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F (x ) и Ф(х ) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х ) = F (x ) + C . Поэтому

Тем самым установлено, что на отрезке [a , b ] приращения всех первообразных функции f (x ) совпадают.

Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т.е. сначала следует найти неопределённый интеграл. Постоянная С из последующих вычислений исключается. Затем применяется формула Ньютона-Лейбница: в первообразную функцию подставляется значение верхнего предела b , далее - значение нижнего предела a и вычисляется разность F(b) - F(a) . Полученное число и будет определённым интегралом. .

При a = b по определению принимается

Пример 1.

Решение. Сначала найдём неопределённый интеграл:

Применяя формулу Ньютона-Лейбница к первообразной

(при С = 0), получим

Однако при вычислении определённого интеграла лучше не находить отдельно первообразную, а сразу записывать интеграл в виде (39).

Пример 2. Вычислить определённый интеграл

Решение. Используя формулу

Свойства определённого интеграла

Теорема 2. Величина определённого интеграла не зависит от обозначения переменной интегрирования , т.е.

(40)

Пусть F (x ) – первообразная для f (x ). Для f (t ) первообразной служит та же функция F (t ), в которой лишь иначе обозначена независимая переменная. Следовательно,

На основании формулы (39) последнее равенство означает равенство интегралов

Теорема 3. Постоянный множитель можно выносить за знак определённого интеграла , т.е.

(41)

Теорема 4. Определённый интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций , т.е.

(42)

Теорема 5. Если отрезок интегрирования разбит на части, то определённый интеграл по всему отрезку равен сумме определённых интегралов по его частям , т.е. если

(43)

Теорема 6. При перестановке пределов интегрирования абсолютная величина определённого интеграла не меняется, а изменяется лишь его знак , т.е.

(44)

Теорема 7 (теорема о среднем). Определённый интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке внутри его , т.е.

(45)

Теорема 8. Если верхний предел интегрирования больше нижнего и подынтегральная функция неотрицательна (положительна), то и определённый интеграл неотрицателен (положителен), т.е. если


Теорема 9. Если верхний предел интегрирования больше нижнего и функции и непрерывны, то неравенство

можно почленно интегрировать , т.е.

(46)

Свойства определённого интеграла позволяют упрощать непосредственное вычисление интегралов.

Пример 5. Вычислить определённый интеграл

Используя теоремы 4 и 3, а при нахождении первообразных – табличные интегралы (7) и (6), получим


Определённый интеграл с переменным верхним пределом

Пусть f (x ) – непрерывная на отрезке [a , b ] функция, а F (x ) – её первообразная. Рассмотрим определённый интеграл

(47)

а через t обозначена переменная интегрирования, чтобы не путать её с верхней границей. При изменении х меняется и опредёленный интеграл (47), т.е. он является функцией верхнего предела интегрирования х , которую обозначим через Ф (х ), т.е.

(48)

Докажем, что функция Ф (х ) является первообразной для f (x ) = f (t ). Действительно, дифференцируя Ф (х ), получим

так как F (x ) – первообразная для f (x ), а F (a ) – постояная величина.

Функция Ф (х ) – одна из бесконечного множества первообразных для f (x ), а именно та, которая при x = a обращается в нуль. Это утверждение получается, если в равенстве (48) положить x = a и воспользоваться теоремой 1 предыдущего параграфа.

Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной

где, по определению, F (x ) – первообразная для f (x ). Если в подынтегральном выражении произвести замену переменной

то в соответствии с формулой (16) можно записать

В этом выражении

первообразная функция для

В самом деле, её производная, согласно правилу дифференцирования сложной функции , равна

Пусть α и β – значения переменной t , при которых функция

принимает соответственно значения a и b , т.е.

Но, согласно формуле Ньютона-Лейбница, разность F (b ) – F (a ) есть

Сложные интегралы

Данная статья завершает тему неопределенных интегралов, и в неё включены интегралы, которые я считаю достаточно сложными. Урок создан по неоднократным просьбам посетителей, которые высказывали пожелания, чтобы на сайте были разобраны и более трудные примеры.

Предполагается, что читатель сего текста хорошо подготовлен и умеет применять основные приемы интегрирования. Чайникам и людям, которые не очень уверенно разбираются в интегралах, следует обратиться к самому первому уроку – Неопределенный интеграл. Примеры решений , где можно освоить тему практически с нуля. Более опытные студенты могут ознакомиться с приемами и методами интегрирования, которые в моих статьях еще не встречались.

Какие интегралы будут рассмотрены?

Сначала мы рассмотрим интегралы с корнями, для решения которых последовательно используется замена переменной и интегрирование по частям . То есть, в одном примере комбинируются сразу два приёма . И даже больше.

Затем мы познакомимся с интересным и оригинальным методом сведения интеграла к самому себе . Данным способом решается не так уж мало интегралов.

Третьим номером программы пойдут интегралы от сложных дробей , которые пролетели мимо кассы в предыдущих статьях.

В-четвертых, будут разобраны дополнительные интегралы от тригонометрических функций . В частности, существуют методы, которые позволяют избежать трудоемкой универсальной тригонометрической подстановки .

(2) В подынтегральной функции почленно делим числитель на знаменатель.

(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала .

(4) Берём оставшиеся интегралы. Обратите внимание, что в логарифме можно использовать скобки, а не модуль, так как .

(5) Проводим обратную замену, выразив из прямой замены «тэ»:

Студенты-мазохисты могут продифференцировать ответ и получить исходную подынтегральную функцию, как только что это сделал я. Нет-нет, я-то в правильном смысле выполнил проверку =)

Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.

На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения:

Пример 2

Найти неопределенный интеграл

Пример 3

Найти неопределенный интеграл

Пример 4

Найти неопределенный интеграл

Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений, думаю, очевидно. Почему я подобрал однотипные примеры? Часто встречаются в своем амплуа. Чаще, пожалуй, только что-нибудь вроде .

Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.

Методом сведения интеграла к самому себе

Остроумный и красивый метод. Немедленно рассмотрим классику жанра:

Пример 5

Найти неопределенный интеграл

Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе не сложно. Если знаешь как.

Обозначим рассматриваемый интеграл латинской буквой и начнем решение:

Интегрируем по частям:

(1) Готовим подынтегральную функцию для почленного деления.

(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишу подробнее:

(3) Используем свойство линейности неопределенного интеграла.

(4) Берём последний интеграл («длинный» логарифм).

Теперь смотрим на самое начало решения:

И на концовку:

Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!

Приравниваем начало и конец:

Переносим в левую часть со сменой знака:

А двойку сносим в правую часть. В результате:

Константу , строго говоря, надо было добавить ранее, но приписал её в конце. Настоятельно рекомендую прочитать, в чём тут строгость:

Примечание: Более строго заключительный этап решения выглядит так:

Таким образом:

Константу можно переобозначить через . Почему можно переобозначить? Потому что всё равно принимает любые значения, и в этом смысле между константами и нет никакой разницы.
В результате:

Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях . И там я буду строг. А здесь такая вольность допускается мной только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.

Пример 6

Найти неопределенный интеграл

Еще один типовой интеграл для самостоятельного решения. Полное решение и ответ в конце урока. Разница с ответом предыдущего примера будет!

Если под квадратным корнем находится квадратный трехчлен, то решение в любом случае сводится к двум разобранным примерам.

Например, рассмотрим интеграл . Всё, что нужно сделать – предварительно выделить полный квадрат :
.
Далее проводится линейная замена, которая обходится «без всяких последствий»:
, в результате чего получается интеграл . Нечто знакомое, правда?

Или такой пример, с квадратным двучленом:
Выделяем полный квадрат:
И, после линейной замены , получаем интеграл , который также решается по уже рассмотренному алгоритму.

Рассмотрим еще два типовых примера на приём сведения интеграла к самому себе:
– интеграл от экспоненты, умноженной на синус;
– интеграл от экспоненты, умноженной на косинус.

В перечисленных интегралах по частям придется интегрировать уже два раза:

Пример 7

Найти неопределенный интеграл

Подынтегральная функция – экспонента, умноженная на синус.

Дважды интегрируем по частям и сводим интеграл к себе:


В результате двукратного интегрирования по частям интеграл свёлся к самому себе. Приравниваем начало и концовку решения:

Переносим в левую часть со сменой знака и выражаем наш интеграл:

Готово. Попутно желательно причесать правую часть, т.е. вынести экспоненту за скобки, а в скобках расположить синус с косинусом в «красивом» порядке.

Теперь вернемся к началу примера, а точнее – к интегрированию по частям:

За мы обозначили экспоненту. Возникает вопрос, именно экспоненту всегда нужно обозначать за ? Не обязательно. На самом деле в рассмотренном интеграле принципиально без разницы , что обозначать за , можно было пойти другим путём:

Почему такое возможно? Потому что экспонента превращается сама в себя (и при дифференцировании, и при интегрировании), синус с косинусом взаимно превращаются друг в друга (опять же – и при дифференцировании, и при интегрировании).

То есть, за можно обозначить и тригонометрическую функцию. Но, в рассмотренном примере это менее рационально, поскольку появятся дроби. При желании можете попытаться решить данный пример вторым способом, ответы обязательно должны совпасть.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения. Перед тем как решать, подумайте, что выгоднее в данном случае обозначить за , экспоненту или тригонометрическую функцию? Полное решение и ответ в конце урока.

И, конечно, не забывайте, что большинство ответов данного урока достаточно легко проверить дифференцированием!

Примеры были рассмотрены не самые сложные. На практике чаще встречаются интегралы, где константа есть и в показателе экспоненты и в аргументе тригонометрической функции, например: . Попутаться в подобном интеграле придется многим, частенько путаюсь и я сам. Дело в том, что в решении велика вероятность появления дробей, и очень просто что-нибудь по невнимательности потерять. Кроме того, велика вероятность ошибки в знаках, обратите внимание, что в показателе экспоненты есть знак «минус», и это вносит дополнительную трудность.

На завершающем этапе часто получается примерно следующее:

Даже в конце решения следует быть предельно внимательным и грамотно разобраться с дробями:

Интегрирование сложных дробей

Потихоньку подбираемся к экватору урока и начинаем рассматривать интегралы от дробей. Опять же, не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.

Продолжаем тему корней

Пример 9

Найти неопределенный интеграл

В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.

Решаем:

Замена тут проста:

Смотрим на жизнь после замены:

(1) После подстановки приводим к общему знаменателю слагаемые под корнем.
(2) Выносим из-под корня.
(3) Числитель и знаменатель сокращаем на . Заодно под корнем я переставил слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.
(4) Полученный интеграл, как вы помните из урока Интегрирование некоторых дробей , решается методом выделения полного квадрата . Выделяем полный квадрат.
(5) Интегрированием получаем заурядный «длинный» логарифм.
(6) Проводим обратную замену. Если изначально , то обратно: .
(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:

Единственное, что нужно дополнительно сделать – выразить «икс» из проводимой замены:

Полное решение и ответ в конце урока.

Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:

Пример 11

Найти неопределенный интеграл

Пример 12

Найти неопределенный интеграл

Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом , метод решения которого рассматривался на уроке Интегралы от иррациональных функций .

Интеграл от неразложимого многочлена 2-й степени в степени

(многочлен в знаменателе)

Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.

Пример 13

Найти неопределенный интеграл

Но вернёмся к примеру со счастливым номером 13 (честное слово, не подгадал). Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.

Решение начинается с искусственного преобразования:

Как почленно разделить числитель на знаменатель, думаю, уже все понимают.

Полученный интеграл берётся по частям:

Для интеграла вида ( – натуральное число) выведена рекуррентная формула понижения степени:
, где – интеграл степенью ниже.

Убедимся в справедливости данной формулы для прорешанного интеграла .
В данном случае: , , используем формулу:

Как видите, ответы совпадают.

Пример 14

Найти неопределенный интеграл

Это пример для самостоятельного решения. В образце решения дважды последовательно использована вышеупомянутая формула.

Если под степенью находится неразложимый на множители квадратный трехчлен, то решение сводится к двучлену путем выделения полного квадрата, например:

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Но в моей практике такого примера не встречалось ни разу , поэтому я пропустил данный случай в статье Интегралы от дробно-рациональной функции , пропущу и сейчас. Если такой интеграл все-таки встретится, смотрите учебник – там всё просто. Не считаю целесообразным включать материал (даже несложный), вероятность встречи с которым стремится к нулю.

Интегрирование сложных тригонометрических функций

Прилагательное «сложный» для большинства примеров вновь носит во многом условный характер. Начнем с тангенсов и котангенсов в высоких степенях. С точки зрения используемых методов решения тангенс и котангенс – почти одно и тоже, поэтому я больше буду говорить о тангенсе, подразумевая, что продемонстрированный прием решения интеграла справедлив и для котангенса тоже.

На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать!

Рассмотрим еще один канонический пример, интеграл от единицы, деленной на синус:

Пример 17

Найти неопределенный интеграл

Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Я приведу полное решение с комментами к каждому шагу:

(1) Используем тригонометрическую формулу синуса двойного угла .
(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на .
(3) По известной формуле в знаменателе превращаем дробь в тангенс.
(4) Подводим функцию под знак дифференциала.
(5) Берём интеграл.

Пара простых примеров для самостоятельного решения:

Пример 18

Найти неопределенный интеграл

Указание: Самым первым действием следует использовать формулу приведения и аккуратно провести аналогичные предыдущему примеру действия.

Пример 19

Найти неопределенный интеграл

Ну, это совсем простой пример.

Полные решения и ответы в конце урока.

Думаю, теперь ни у кого не возникнет проблем с интегралами:
и т.п.

В чём состоит идея метода? Идея состоит в том, чтобы с помощью преобразований, тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса . То есть, речь идет о замене: . В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала .

Аналогичные рассуждения, как я уже оговаривался, можно провести для котангенса.

Существует и формальная предпосылка для применения вышеуказанной замены:

Сумма степеней косинуса и синуса – целое отрицательное ЧЁТНОЕ число , например:

для интеграла – целое отрицательное ЧЁТНОЕ число.

! Примечание :если подынтегральная функция содержит ТОЛЬКО синус или ТОЛЬКО косинус, то интеграл берётся и при отрицательной нечётной степени (простейшие случаи – в Примерах №№17, 18).

Рассмотрим пару более содержательных заданий на это правило:

Пример 20

Найти неопределенный интеграл

Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное ЧЁТНОЕ число, значит, интеграл можно свести к тангенсам и его производной:

(1) Преобразуем знаменатель.
(2) По известной формуле получаем .
(3) Преобразуем знаменатель.
(4) Используем формулу .
(5) Подводим функцию под знак дифференциала.
(6) Проводим замену . Более опытные студенты замену могут и не проводить, но все-таки лучше заменить тангенс одной буквой – меньше риск запутаться.

Пример 21

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Держитесь, начинаются чемпионские раунды =)

Зачастую в подынтегральной функции находится «солянка»:

Пример 22

Найти неопределенный интеграл

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:

Искусственное преобразование в самом начале и остальные шаги оставлю без комментариев, поскольку обо всем уже говорилось выше.

Пара творческих примеров для самостоятельного решения:

Пример 23

Найти неопределенный интеграл

Пример 24

Найти неопределенный интеграл

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока

← Вернуться

×
Вступай в сообщество «allcorp24.ru»!
ВКонтакте:
Я уже подписан на сообщество «allcorp24.ru»