Телефоны от а до я. Ремонт импортных телефонных аппаратов

Подписаться
Вступай в сообщество «allcorp24.ru»!
ВКонтакте:
Для работы телефонного аппарата необходимо выполнить два условия, это обеспечить питание разговорных цепей постоянным напряжением 1,5 – 9 вольт (в зависимости от типа аппарата) и обеспечить питание цепей вызова переменным напряжением 40 – 60 вольт, 25 – 50 Гц. По принципу питания телефонные аппараты делятся на две группы. К первой группе относятся аппараты местной батареи (МБ), у которых все источники питания находятся внутри: гальваническая батарея – для питания разговорных цепей и ручной индуктор переменного тока для посылки вызова абоненту. К таким телефонам относятся полевые военные аппараты ТАИ-43 и ТА-57. Ко второй группе относятся аппараты центральной батареи (ЦБ), питание цепей которых осуществляется от центральной станции или АТС, своих источников питания эти аппараты не имеют. К таким телефонам относятся все аппараты с номеронаберателями и некоторые другие общего пользования типа: ТА-68, ТАН-70, VEF TA-12, Aster и др. При соединении между собой двухпроводной линией аппаратов первой группу, они сразу начинают работать без всяких проблем, так как являются аппаратами МБ с местной батареей. Для того, чтобы заставить работать два, соединённых между собой, аппарат ЦБ второй группы я собрал специальное устройство. Существует не мало описаний таких устройств, но у всех этих схем, как писали ранее, имеется существенный недостаток – для соединения аппаратов требуется трехпроводная линия. Собранное мной устройство обеспечивает работу по двухпроводной линии.

Само питающее устройство находится со стороны одного из абонентов и состоит из понижающего сетевого трансформатора Тр1. Вторичная обмотка трансформатора обеспечивает два напряжения 40 и 15 вольт. Переменное напряжение 40 вольт обеспечивает вызывные цепи. Второе напряжение выпрямляется мостом КЦ и стабилизируется стабилизатором на КРЕН – используется для питания разговорных цепей. Стабилизатор и конденсатор С1 нужны для уменьшения фона переменного напряжения при разговоре. Стабилизатором можно пренебречь если фон не большой. Кнопки КН используются без фиксации и крепятся в корпусах телефонных аппаратов. Аппарат ТА2 соединён с аппаратом ТА1 и устройством телефонным двухпроводным проводом ТРП 1 х 2. Нижние по схеме контакты переключателей КН1 и КН2 заземлены. Заземлением может служить труба водопровода, отопления, металлический штырь вбитый в землю. Я использовал заземляющий контакт евророзетки.


Работа схемы. При нажатии кнопки КН1 на аппарате ТА1 переменное напряжение 40 В с обмотки трансформатора через замкнутые контакты кнопки ЕН1 поступает через линию, нормально замкнутые контакты КН2 на вызывное устройство аппарата ТА2. (когда трубка лежит на аппарате, то в нем к линии подключено вызывное устройство). С аппарата через линию, конденсатор С1, на второй коней обмотки 40 В. В телефоне ТА2 звонит звонок. При поднятии в обоих аппаратах телефонных трубок и отжатых кнопках КН1 и КН2 , к линии подключаются переговорные цепи аппаратов. В этом случае источник питания постоянного напряжения 12 вольт оказывается подключён последовательно с телефонными аппаратами. По цепи: Конденсатор С1 плюс источника питания, соединительная линия, разговорные цепи аппарата ТА2, замкнутые контакты кнопки КН2, линия, замкнутые контакты КН1, Разговорная цепь аппарата ТА1, минус источника питания. Аналогично схема работает при посылке вызова с телефонного аппарат ТА2. При нажатии кнопки КН2, вызывное переменное напряжение 40 В с обмотки трансформатора через заземление и замкнутые вызывные контакты КН2 поступает в линию и через контакты КН1 на звонок телефона ТА1 и второй конец обмотки Тр1 40 В. Разговор абонентов происходит по описанной выше цепи. В моём случае использования данного устройства в точке установки телефона ТА2 не было вообще никаких линий кроме заземления и телевизионного кабеля кабельного телевидения, идущего на телевизор. Прокладывать новую линию по зданию было далеко и накладно, а телевизионный кабель проходил недалеко от установки телефона ТА1. В результате мне удалось соединить телефонные аппараты ТА1 и ТА2 с помощью уже проложенного телевизионного кабеля РК75 не нарушая работы телевизора. Для этих целей я установил на кабеле специальные разделительные фильтры.


Дроссели Др1 и Др2 служат для подавления высокочастотного телевизионного сигнала от проникновения в телефоны и одновременно сохраняют физическую цепь между аппаратами. Намотаны на сопротивлениях МЛТ 100 к проводом ПЭЛ 0.2 до заполнения. Экранная оплетка кабеля РК75 используется как второй провод линии. Конденсаторы С1 и С2 препятствуют проникновению напряжения на элементы аппаратуры телевидения, но в свою очередь хорошо пропускают радиочастотный телевизионный сигнал. Всё работает устойчиво.

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят следующие обязательные элементы: микрофон и телефон, объединенные в микротелефонную трубку, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель. На принципиальных электрических схемах телефонный аппарат обозначают буквой Е.

Кратко рассмотрим назначение основных элементов телефонного аппарата.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы такого микрофона обязательно требуется вспомогательный источник питания.

В массовых телефонных аппаратах применяют, как правило, угольные микрофоны, в которых под действием звуковых волн изменяется электрическое сопротивление угольного порошка, находящегося под мембраной. Наиболее широко используют микрофонные капсюли типов МК-10, МК-16, обладающие достаточно высокой чувствительностью (в описываемых устройствах применены в основном угольные микрофоны). На принципиальных схемах микрофон обозначают латинскими буквами ВМ.

Следует отметить, что в последнее время ряд телефонных аппаратов оснащают также конденсаторными микрофонами типов МКЭ-3, КМ-4, КМ-7.

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. В зависимости от конструктивных особенностей телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В телефонных аппаратах наибольшее распространение получили телефоны электромагнитного типа. В таких телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания. В современных телефонных аппаратах применяют в

основном телефонные капсюли типа ТК-67, а в аппаратах устаревших конструкций — также ТК-47 и ТА-4.

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства. Первое из них представляет собой одно- или двухкатушечный звонок. Звуковой сигнал образуется в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создаст переменное магнитное поле, которое приводит в движение якорь с бойком. Как правило, в телефонных звонках используют постоянные магниты, создающие определенную полярность магнитопровода, поэтому такие звонки называют поляризованными. Сопротивление обмоток звонка постоянному току составляет 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Электронное вызывное устройство преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон или пьезоэлектрический вызывной прибор ВП-1. Такие вызывные устройства применяют, например, в современных телефонных аппаратах ТА-1131 "Лана", ТА-1165 "Стелла" и др. Электронные вызывные устройства выполняют на транзисторах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект, о чем будет сказано ниже. Трансформаторы изготавливают с отдельными обмотками или в виде автотрансформаторов.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы типов МБМ, К73-П емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.

Номеронабиратель обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. Импульсы служат для периодических замыканий и размыканий линии. В современных телефонных аппаратах применяют механические и электронные номеронабиратели. Дисковый механический номеронабиратель имеет диск с десятью отверстиями. При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, коммутирующих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно-два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию нс поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить неприятные щелчки. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются многие современные телефонные аппараты (например, ТА-5, ТА-7, ТА-101), выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время:

запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в нерабочем состоянии (микротелефонная трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов, срабатывающих при снятии телефонной трубки.

Кроме перечисленных элементов в состав телефонного аппарата входят также резисторы, конденсаторы, диоды, транзисторы, образующие разговорную цепь аппарата.

Рассмотрим устройство телефонного аппарата (ТА) в целом.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает нс только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противо-местные устройства.

Существуют различные типы подобных устройств. Рассмотрим одно из них — противоместное устройство мостового типа (рис. 1).

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальных условиях невыполнимо, поскольку речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.), поэтому на практике местный эффект не уничтожается полностью, а только ослабляется.

Рассмотрим схему телефонного аппарата ТА-72М-5 (рис. 2), предназначенного для работы в городских сетях. Его коммутационно-вызывную часть образуют рычажный переключатель SA1, звонок НА1, разделительный конденсатор С1 и номеронабиратель SA2. Разговорная часть телефонного аппарата состоит из телефона BF1, микрофона ВМ 1, трансформатора Т 1, балансного контура (конденсаторы С1 и С2, резисторы R1—R3) и ограничительных диодов VD1, VD2. Разговорная часть выполнена по противоместной схеме мостового типа.

В исходном состоянии контактов рычажного переключателя SA1 и номеронабирателя SA2, показанном на схеме, к линии подключены последовательно соединенные между собой звонок НА1 и конденсатор С1, а разговорная часть отключена. При появлении вызывного напряжения на зажимах 1 и 4 телефонного аппарата ток протекает по цепи: зажим 1 — перемычка — зажим 3 — обмотка звонка — нормально замкнутые контакты SA1.2 рычажного переключателя — конденсатор С1 — зажим 4. (Направление тока выбрано условно — с таким же успехом его можно было бы считать протекающим от зажима 4 к зажиму 1.) Услышав звонок, абонент снимает трубку. При этом контакты SA1.1 и SA1.2 переключаются в другое положение, отключая вызывную цепь и подключая к линии разговорную цепь. Сопротивление постоянному току между зажимами 1 и 4 изменяется от очень большого (сотни килоом — мегаомы) до относительно малого (сотни ом), это фиксируется приборами телефонной станции, и они переключаются в разговорный режим.

При наборе номера контакты SA2.1 номеронабирателя находятся в замкнутом состоянии во время прямого и возвратного вращения диска, что обеспечивает шунтирование разговорной цепи и исключает прослушивание щелчков в телефоне. При возвратном вращении диска номеронабирателя контакты SA2.2 разрывают линейную цепь, и приборы станции по числу таких размыканий фиксируют номер вызываемого абонента.

Диоды VD1 и VD2 ограничивают выбросы напряжения на обмотках телефона и исключают резкие звуки, неприятные для уха.

Для работы в сетях телефонных станций ручного обслуживания используют телефонные аппараты без номеронабирателя. Схема одного из таких аппаратов (типа ТА-68ЦБ-2) показана на рис. 3. Основным отличием его от предыдущего аппарата является отсутствие контактов номеронабирателя и одной группы контактов рычажного переключателя, в связи с чем звонок и конденсатор С1 остаются подключенными к линии и в разговорном режиме. Однако они практически нс оказывают влияния на работу телефонного аппарата в таком режиме.

В устройствах телефонной связи, которые описаны в этой книге, можно использовать выпускаемые промышленностью телефонные аппараты как с номеронабирателем (ТА-68, ТА-72М-5, ТА-1146 и др.), так и без него (ТА-68ЦБ-2 и другие аналогичные). Но телефонные аппараты без номеронабирателя годятся только для телефонных коммутаторов с ручным управлением. Если в распоряжении радиолюбителя имеется телефонный аппарат, у которого исправны лишь трубка и звонок, его также можно использовать. В этом случае соединение элементов осуществляют в соответствии со схемой, приведенной на рис. 4. Конденсатор С1 — типа К73-17, МБМ, МБГО. Следует отметить, что в таком телефонном аппарате в полной мере будет проявляться местный эффект, но ради простоты можно несколько поступиться удобством.

Рассмотрим кратко, каким образом осуществляется коммутация телефонных линий в городских АТС. С 1876 г., когда шотландец А.Г.Белл изобрел первый в мире двухпроводный телефон, принцип телефонной связи нс претерпел существенных изменений.

Схема организации телефонной связи между двумя абонентами показана на рис. 5. Ток питания телефонных аппаратов El, E2 про-

ходит через дроссели L1 и L2. Дроссели необходимы для того, чтобы не происходило замыкание разговорного (переменного) тока через источник питания постоянного тока Uпит, внутреннее сопротивление которого очень мало и составляет доли ома. Источник постоянного тока принято называть центральной батареей (ЦБ). Дроссели L1 и L2 имеют относительно небольшое сопротивление постоянному току (обычно не более 1 кОм). Индуктивность дросселей достаточно велика и в диапазоне частот разговорных токов (300...3500 Гц) создаст столь значительное сопротивление разговорному (переменному) току, что он практически не ответвляется в ЦБ и протекает в контуре между аппаратами Е1 и Е2. На АТС в качестве дросселей обычно используются обмотки двухобмоточных реле, причем эти реле одновременно служат для получения сигнала о вызове станции абонентом и сигнала окончания разговора (отбоя).

Индуктор формирует переменное вызывное напряжение частотой 16...50 Гц, которое приводит в действие вызывное устройство нужного телефонного аппарата.

Коммутация абонентов первоначально выполнялась на АТС вручную, затем стали использовать шаговые искатели, а в настоящее время коммутация осуществляется квазиэлектронным или электронным способом. Устройства коммутации АТС управляются импульса

ми постоянного тока, которые создаются номеронабирателем телефонного аппарата при наборе абонентом цифр номера вызываемого абонента.

Рисунок 6 иллюстрирует простейший принцип установления соединения на АТС. Телефонный аппарат первого абонента Е1 подключен к ЦБ (Uпит) через обмотки двухобмоточного реле К1. При снятии первым абонентом микротелефонной трубки аппарата Е1 реле К1 срабатывает и контактами К 1.2 подаст питание на обмотку реле К2. Это реле устроено таким образом, что отпускание якоря происходит не сразу после снятия напряжения с его обмотки, а с некоторой задержкой (в данном случае эта задержка составляет около 0,1 с). Контакты реле К2.2 подготавливают цепь питания шагового искателя КЗ. При наборе абонентом Е1 номера вызываемого абонента цепи питания обмоток реле К1 будут прерываться контактами номеронабирателя телефонного аппарата Е1 (это происходит при возвратном движении диска номеронабирателя). Контактами К1.1 подаются импульсы питания на обмотку шагового искателя КЗ соответственно цифре номера вызываемого абонента. По окончании вращения диска номеронабирателя телефонного аппарата Е1 контакты шагового искателя соединят линию вызывающего абонента с линией вызываемого, после чего абоненты смогут вести разговор.

Когда по окончании разговора абонент положит микротелефонную трубку на аппарат Е1, реле К1 отпустит, его контакты К 1.2 разомкнут цепь питания реле К2, которое спустя 0,1 с также отпустит. При этом через контакты К2.1, КЗ.4 и КЗ.3 будет подано питание на обмотку шагового искателя КЗ. Контакт КЗ.4 скользит по сплошной ламели шагового искателя и разомкнется только тогда, когда шаговый искатель придет в исходное состояние. Контакт КЗ.3 — это самопрерывающий контакт шагового искателя, который прерывает цепь питания обмотки шагового искателя при притяжении якоря к сердеч-

нику. Благодаря этому контакту на обмотке КЗ формируется серия импульсов, которые последовательно устанавливают контакты КЗ.1 и КЗ.2 в исходное положение.

Четкость работы абонентских реле и шагового искателя зависит от времени размыкания контактов номеронабирателя, которое не должно превышать 0,1 с. В противном случае при размыкании контактов К 1.2 реле К2 не сможет удержать якорь, и соединения не произойдет. Поэтому параметры номеронабирателей телефонных аппаратов должны соответствовать следующим требованиям:

1) частота импульсов номеронабирателя 10±1 имп/с;

2) период повторения импульсов 0,95...0,105 с;

3) пауза между сериями импульсов не менее 0,64 с;

4) отношение времени размыкания к времени замыкания импульсного контакта номеронабирателя, называемое импульсным коэффициентом, в зависимости от типа АТС 1,3...1,9.

Центральная батарея АТС осуществляет питание линий абонентов постоянным напряжением Uпит = 60 В. При снятии микротелефонной трубки телефонного аппарата линия АТС оказывается нагруженной на внутреннее сопротивление телефонного аппарата, в результате напряжение на зажимах линии падает до 10...20 В (в зависимости от удаленности абонента от АТС и типа применяемого аппарата). Внутреннее сопротивление телефонного аппарата при снятой трубке может составлять 200...800 Ом, а рабочий (разговорный) ток через аппарат — 20...40 мА. Приведенное к гнездам абонента сопротивление АТС, которое включает сопротивления линии, обмоток реле К1 (см.рис. 5) и внутреннее сопротивление центральной батареи, может составлять от 600 Ом до 2 кОм.

Для телефонного аппарата с дисковым номеронабирателем набор номера абонента осуществляется следующим образом: при вращении

диска по часовой стрелке до пальцевого упора контакты номеронабирателя замыкают линию, а при возвратном вращении линия размыкается такое число раз, которое соответствует набранной цифре. На рис. 7 показана временная диаграмма работы телефонного аппарата.

В качестве вызывного сигнала на АТС используется переменное напряжение 80...120 В частотой 16...30 Гц.

В устройствах телефонной связи, описанных в книге, применяют два способа соединения линий телефонных аппаратов: параллельное и последовательное (рис. 8).

Схема с параллельным соединением телефонных аппаратов была рассмотрена выше (рис. 5). Отличие схемы, приведенной на рис. 8,а, состоит в том, что вместо двух катушек индуктивности включен стабилизатор тока СТ, т.е. двухполюсник, ток через который сохраняется неизменным при изменении параметров внешней цепи в определенных пределах.

В любом случае справедливо соотношение L1 + L2 = L= const. поэтому изменение тока в цепи первого абонента вызывает точно такое же изменение тока в цепи второго абонента, но с противоположным знаком. При этом обеспечивается максимально возможная громкость разговора. Практически в переговорных устройствах вместо стабилизатора тока можно использовать резистор сопротивлением 1...5 кОм, однако следует учесть, что при этом громкость разговора несколько снизится.

На рис. 8,6 приведена схема последовательного соединения телефонных аппаратов. При таком соединении разговорный ток одного аппарата полностью протекает через второй аппарат, что обеспечивает максимально возможную громкость разговора (при данных условиях).

Следует заметить, что в городских АТС последовательный способ соединения линий телефонных аппаратов нс используется из-за сложности коммутации аппаратов. (В книге данный способ применяется в переговорных устройствах и коммутаторах с ручным управлением.)

Ремонт импортных телефонных аппаратов

В последние годы на прилавках магазинов появилось большое количество простых телефонных аппаратов зарубежного производства, к которым нет никакой технической документации. Автор предлагает схемы и рекомендации по ремонту двух моделей телефонных аппаратов - ВТ60М и ВТ960Р.

В процессе ремонта каждого телефонного аппарата (ТА) приходится изучать его принцип работы. Рассмотрим сначала модель BT60M. Схема этого телефона показана на рис. 1.

(нажмите для увеличения)

Рычажный переключатель SF1 показан на схеме в положении "трубка положена". ТА собран на двух печатных платах - основной (рис. 2) и плате клавиатуры, которые соединены между собой ленточным шлейфом.

В этом аппарате были обнаружены следующие дефекты: при наборе номера прослушивались импульсы, но в линию набор не отрабатывался; при разговоре собеседник на другом конце провода жаловался на низкий уровень звукового сигнала.

В процессе ремонта выяснилось, что неисправен транзистор VT3, выполняющий роль импульсного ключа, а также была обнаружена утечка коллектор-эмиттер транзистора VT5. После замены этих транзисторов телефон стал нормально работать.

Микросхему UM91610A можно заменить на VT91611.

На рис. 3 показана схема телефона модели BT960P. Рычажный переключатель SF1 показан в положении "трубка положена". Вместо микросхемы IS2 (UM9151-3) подойдет КР1008ВЖ17 или FT9151-3 с соответствующей подборкой цепей задающего генератора. На микросхеме IS1 (подойдут также КР1436АП1 или FT2410) собран генератор вызывного сигнала.

(нажмите для увеличения)

Во время ремонта аппарата были обнаружены такие неисправности: не работало вызывное устройство, при разговоре была плохая слышимость на другом конце телефонной линии. Транзистор Q2 был пробит. На основной плате (рис. 4) отсутствовал резистор R3, обозначенный штриховой линией, хотя посадочное место для него имеется. При ремонте вызывного устройства выяснилось, что резистор R3 устанавливают в том случае, когда используется микросхема КА2411.

Существуют две группы микросхем для вызывных устройств. В первой группе резистор RВС(R3), подключенный между входом ВС и общим проводом, позволяет принудительно отключать генерацию при напряжении питания микросхемы, равном рабочему (25,1...28,9 В). К этой группе относятся следующие микросхемы: КР1436АП1, FT2410, КА2410, ML8204, DBL5001 и т. д. Тип применяемого стабилитрона зависит от рабочего напряжения микросхемы .

Во второй группе резистор RВС(R3), подключенный между входом ВС и корпусом, позволяет изменять входное сопротивление микросхемы . К этой группе относятся микросхемы КР1436АП2, FT2410, КА2410, ML8205, DBL5002.

Так как установленная в этом телефоне микросхема относится к первой группе, то резистор R3 должен иметь сопротивление 220 кОм (при рабочем напряжении 27 В) и его следует подключить между первым (U) и вторым (ВС) выводами микросхемы IS1.

Микросхемы вызывных устройств первой и второй групп по техническим параметрам одинаковы, но вход управления (ВС) для каждой группы выполняет свои функции. Подробно о работе этих микросхем можно прочитать в .

Литература

  1. Интегральные микросхемы. Микросхемы для телефонии. Вып. 1. - М.: ДОДЭКА, 1994, с. 256.
  2. Кизлюк А. Устройство и ремонт телефонов зарубежного и отечественного производства. - М.: Библион, 1997

Сегодня хочу рассказать о том как правильно читать схемы мобильных телефонов. Постараюсь рассказать самое элементарное что должен знать мастер. И так. С чего начать? Первое что нужно знать. Это как называются микросхемы и как их обозначают на схемах.

1. Процессор. Процессор как правило подписывают на схеме CPU либо RAP, RAPIDO. Они чаще всего квадратные и чаще всего самые большие. Если это Nokia то по ободку процессора в большинстве случаев идет “юбка” . В новых моделях Нокия часто можно встретить процессор стоящий на флешке. Их называют “бутерброд” это самое худшее что может быть после компаунда) что такое компаунд как нибудь потом.
2. Флешка. Флешка на схемах пишется как flash и где то я встречал mem, memory. Она чаще всего прямоугольной формы. И помним, в телефонах nokia проццесор и флешка меняются только в паре. И подходят только от идентичной модели. Это я к тому что к примеру у телефонов nokia 6233 и 6300 одинаковые процессора. Но это только с виду! Работать они не будут!

3. Контролер питания. Его на схемах подписывают разными “именами” может быть написано retu, tahvo, betty, UEM все это контролер питания. В большинстве это такие маленькие квадратные микросхемы.
4. Так же в любом мобильном телефоне есть приемник и передатчик RF chip and GSM FEM. С передатчиками при замене нужно быть внимательней. Некоторые с виду одинаковые но разные последние цифры в маркировке. Но не работают на других телефонах. Другие же могут быть похожими и принципиально разные цифры но работать будут. В процессе работы Вы сами сможете для себя. Своим опытом построить схемку совместимости моделей.
Это были на мой взгляд самые основные. Если есть какие-то вопросы по микросхемам и их обознычению. Да и вообще любые вопросы касающиеся ремонта мобильного телефона. Задаем на в комментариях или пишем на скайп. Номер которого можно найти в моих контактах

Добавлю еще на примере телефона nokia 6233 картинку с расположением этих деталей

Вспомнил! Есть еще 2 важные детали в телефонах. Не во всех правда. Короче. Это терморезистор и предохранитель. Предохранитель стоит чаще всего на зарядку. Но в некоторых телефонах его можно встретить и на камеру. Очень часто перегорает. И тогда приходится ставить перемычку. И терморезистор. Что такое терморезистор? Это такая коварная гадость)) Терморезистор стоит в цепи заряда телефона и отвечает за перегрев. Очень часто этот терморезистор лопается после удара или отгнивает после воды. Тогда телефон при подключению к зарядному устройству начинает писать “не верная батарея” или “зарядное устройство не допустимо” или еще что то там. Все уже и не вспомню. В таком случае это терморезистор. Как их можно найти на схеме? Да очень просто! Предохранитель стоит сразу за разьемом и называется FUSE , а терморезистор BTemp. Нужно также помнить. что терморезистор ничем нельзя заменить. Только другим терморезистором. Перемычки-сопли) в даном случае не катят. На сегодня все. Надоело писать))

← Вернуться

×
Вступай в сообщество «allcorp24.ru»!
ВКонтакте:
Я уже подписан на сообщество «allcorp24.ru»